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1 Introduction

So, very roughly, expander graphs are graphs which are simultaneously very sparse (and so
have few edges), but very well-connected. These graphs were first studied in the early 70s,
but since then it has turned out that the property of being an expander is significant in many
different contexts, mathematical, but also physical and computational. In computer science
they come up very naturally in the design and analysis of communication networks, but also
have surprising applications to many other topics, such as error-correcting codes, the theory
of pseudorandomness and the analysis of Monte-Carlo algorithms. In mathematics, outside of
graph theory, they have found use in the theory of Metric embeddings (embedding metric spaces
into Euclidean spaces) which also turns out to have applications in computing, the convergence
of Markov chains, Sieve theory in both an arithmetic (i.e number theoretic) and algebraic (i.e.
group theory) setting and to the study of hyperbolic manifolds, to name just a small selection
of topics. We will touch on a few of these applications in the course.

Beyond this, and partly because of it this, it seems that expansion is a fundamental concept
that deserves to be investigated in it’s own right. One reason for the ubiquity of, and the
interest in expander graphs comes from the fact that the notion of expansion can be cast in
multiple different forms: Combinatorially, expander graphs can be defined in terms of their
high connectivity - to disconnect a larger part of the graph we have to delete many edges.
Geometrically, they can be defined in terms of the isoperimetric constant - small sets have to
have large boundaries. Probabilistically, they can be defined in terms of the the mixing time
of random walks - if we take a random walk on the graph, how long do we have to walk until
we’re ‘fully lost’. Finally, algebraically, expanders can be defined by thinking about the graph
as an operator, determined by it’s adjacency matrix, and the spectrum of this operator (the
eigenvalues).

These four perspectives offer different tools to study expander graphs from, as well as suggest-
ing interesting questions about the connections between the various definitions (i.e., qualitatively
how does one expansion notion affect the others)

Let me start then by giving a rough overview of the structure of course.

1. Three motivating examples

� We start by giving essentially an introductory lecture, or series of lectures, where we
give three motivating examples (where expander graphs arise in surprising contexts).
Namely for constructing error correcting codes, for deterministically improving ran-
dom algorithms and for analysing the hardness of linear transformations (how effi-
ciently can we compute linear transformations). The hope is that this gives us a little
taste of what expander graphs are about, and how they are used, to motivate the rest
of the course.

2. A spectral view of expansion

� We then move on to defining expansion algebraically, by relating the expansion to the
eigenvalues of a graph. We’ll talk about various extremal questions about spectral
expansion and also the ‘Expander mixing lemma’ which is an important tool relating
the spectrum to the edge distribution and notions of pseudorandomness.

3. Random walks on expander graphs
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� We then talk about the probabilistic definition of expansion, looking at random walks
on expander graphs and showing that they rapidly mix, i.e approach the limiting
distribution quickly. We can use this intuition to use random walks to sample vertices
efficiently from the graph, and we’ll give some applications of this idea in computer
science

4. A geometric view of expansion

� We then move on to the geometric definition of expansion, where we relate expansion
to the geometric notion of isoperimetry. An important idea here is a discrete analogue
of the Laplace operator, whose spectrum is related to that of the graph. Cheeger’s
inequality in Riemannian geometry relates the spectrum of the Laplace operator to
the isoperimetric constant, and the discrete analogue here is fundamental to relating
this view to the algebraic view.

5. Extremal problems on spectrum and expansion

� Having introduced the various types of expansion, we focus on the extremal aspects
- how large can the various notions of expansion be, both in themselves, and with
respect to each other.

6. The Margulis construction, the Zig-zag product and lossless conductors.

� We finally give some explicit constructions of expander graphs. The first is the Mar-
gulis construction, which is algebraic in nature, and to prove it’s expansion we’ll use
some discrete fourier analysis. We then demonstrate a more flexible way of building
expander graphs explicitly and inductively using a graph product, here the analysis
will depend on Entropic methods, an idea coming from Shannon’s seminal work on
communication. Finally we will consider the problem of constructing optimal vertex
expanders using the zig-zag product, which turns out to be related to randomness
preserving and enhacing objects such as conductors and extractors.

7. Application to metric embeddings

� To round off the course we’ll briefly talk about the relationship of expanders with
problems of metric embeddings, showing how the graph metric of expanders graphs
are examples of metrics which are in some sense as far from Euclidean as possible,
and how the question of embedding metric spaces with low distortion can be used to
infrom algorithms for determining the expansion of a graph.
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2 Three motivating problems

2.1 Hardness for linear transformations

A very natural question to consider in the context of computing is, given some library or set of
basic operations and some goal function, how simple can an algorithm be that computes this
goal only using these operations.

For example, we might be given some multinomials or linear transformations over a field, and
we use to compute the output from a given input, but only using addition and multiplication.

One very simple model for this would be a straight line program, we have a set of variable
names X = {xi} and some collection of basic operations F = {fe} and we have a finite sequence
of instructions (or gates) of the form Ii = ‘xi = fe(xj , xk)

′, with the restriction that the variable
xi appearing on the left hand side does not occur previously in the sequence.

It’s natural to model this as a directed graph D (or at least a labelled directed graph) where
we put an edge from xj and xk to xi for each gate xi = fe(xj , xk). The sources of D are the
input nodes and the sinks the output nodes.

One particularly simple type of straight line program would be a linear program where the
allowed operations are of the form fa,b(xj , xk) = axj + bxk for some a, b ∈ R.

The following problem is then very natural

Question 2.1. Let A be an n × n matrix over a field F (nb. this turns out toe be interesting
for finite fields as well). What is the least number of gates in a linear program, or equivalently
what is the least number of edges in the associated graph, which computes the transformation
x 7→ Ax?

Not only is this question obviously very intersting theoretically, it has genuine technological
significance. Indeed if we let aij = ωij where ω is a primitive nth root of unity then this
transformation is the discrete Fourier transform or DFT, which is fundamental to many modern
technologies involving signal processing, spectral analysis, machine learning etc.

A direct computation of the DFT from the definitions would use O(n2) gates, however the so
called fast fourier transform of FFT, designed by Cooley and Tukey, improves this to O(n log n),
which is actually a huge improvement in practical terms.

Since you need at least O(n) gates just to specify the input, the FFT is close to the theoretical
limit in terms of complexity. Whilst this log n gap might seem small, it is quite significant, the
existence of a VFFT using only O(n) gates would have genuine technological consequences,
whereas on the other hand establishing the necessity of Ω(n log n), or even just ω(n) gates
would be a huge theoretical breakthrough.

For every finite field F it is fairly easy to show that most n× n matrices A require Ω
(

n2

logn

)
gates, just based on a double counting argument - Count the number of possible linear programs
with a given number of gates and count the number of matrices. However, as is often the case
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with computational complexity, even though we know that computationally hard functions are
abundant, it is very difficult to exhibit specific, explicit linear transformations which require
more than O(n) gates.

It was discovered by Valiant that for certain types of matrices A, the graph of any linear
program which computes this transformation must have certain connectivity properties. A
general property of A which guarantees this is the following: We say A is super regular if every
square submatrix of A has full rank.

Roughly one can show that the outputs of such a transformation are so intricately dependent
on the inputs, that it is impossible to separate them in the graph easily. This leads to the
definition of a super concentrator a graph G = (V,E) with two sets I and O of inputs and
outputs such that for every k and every S ⊆ I and T ⊆ O with |S| = |T | = k there exists a set
of k vertex disjoint paths in G from S to T .

It is a simple exercise to show that the underlying graph of any linear program which computes
the transformation of a super regular matrix is a superconcentrator. Valiant conjectured that
any super concentrator must have ω(n) many edges. Note that the DFT is not super regular,
although Valiant also showed it must satisfy a slightly weaker connectivity property (in terms
of bilinear programs for example the convolution is super regular)

However, Valiant himself disproved this conjecture, using expander graphs to construct super
concentrators with O(n) edges, which can be used to give an explicit super regular matrix A
that has a linear program of linear complexity. We’ll go into more details of this at the end of
this section.

This might seem like the end of the story, but it turned out that Valiant was thinking
along the right lines, and in a closely related setting these superconcentrators turned out to
be essential. Roughly if we consider programs with more than two input per gate allowed, but
where we restrict the depth of the program (length of a path from input to output) then ω(n)
lower bounds for the number of edges in the corresponding graphs can be proven. From this it
can be deduced that for certain types of linear transformations there are superlinear bounds for
the complexity of computing them using bounded depth linear circuits.

2.2 Error correcting codes

A fundamental problem in communication is noise. Suppose Alice has a message consisting of
k bits which she would like to transmit to Bob over some noisy communication channel. The
noise means that Bob might receive a different message to the one that Alice sends.

A very simple model of this noise (although not a particular good one) would to be to assume
that the noise won’t change more than a certain fraction p of the bits (more reasonably you might
model it as a probability that a bit is corrupted, although for large k and fixed p it’s very unlikely
that significantly more or less bits are corrupted than expected).

Question 2.2. Alice and Bob are communicating over a noisy channel where a fraction p of
the bits sent might be altered. What is the smallest number of bits that Alice can send so that
Bob can unambiguously recover the a k-bit message?
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This question was considered by Claude Shannon in his ground breaking paper “A math-
ematical theory of communication”, which introduced many fundamental topics in computer
science, in a surprisingly developed form, although the exact form of the question is due to
Hamming (whose name you might recognise from the Hamming distance).

To solve this problem Shannon suggested creating a dictionary/code C ⊆ {0, 1}n of size
|C| = 2k and usng a bijective mapping (an encoding) ϕ : {0, 1}k → C. To send a message
x ∈ {0, 1}k, Alice transmits the n-bit encoded message ϕ(x) ∈ C.

Bob will then receive some string y ∈ {0, 1}n, which might differ from ϕ(x) in a fraction p of
the bits. Bob’s decoding function is simple: Look for the ‘closest ’ codeword z ∈ C to y, where
we use the Hamming metric, the number of bits which differe, to compute this distance and
deduce that the message was ϕ−1(z).

When can this go wrong? Well, if two of the codewords are too close together, then Bob can
mistake one message for another. More precisely, we need that the Hamming distance between
all codewords is at least 2pn.

So, we’ve reduced the problem of communicating over this noisy channel to a very concrete
combinatorical problem - Given k and p we need to choose n so that we can find a set of 2k

points in {0, 1}n which are all at least pn away from each other.

Given a dictionary C its rate is given by R = log |C|
n and its distance by

δ =
minc1 ̸=c2∈C dH(c1, c2)

n
.

So, the rate measures it’s efficient in terms of utilising the channel (not sending too many bits
to transmit a short message) and the distance measures it’s ability to overcome the noise of the
channel.

Question 2.3. Is it possible to design arbitrarily large dictionaries C whose rate and distance
are at least R0 and δ0 for come absolute constants R0 and δ0?

Moreover, can we make these codes explicit, and can we efficiently encode and decode them?

This problem and its relatives (optimising the code’s parameters and the efficiency of the
algorithms to encode and decode) in this and other models of noise form the basis of Coding
theory. It took over 20 years until even the basic question above was resolved, but we are able
to give a simple solution to this problem using expander graphs.

2.3 Deterministic error amplification

Randomised algorithms were first considered in the context of primality testing. Rabin, and
Solovay and Strassen gave algorithms which when inputted with a k bit integer x and a string
r of k random bits, and efficiently computes a function f(x, r) which take the values 0 and 1. If
f = 1 then x is a prime with probability at least 1

2 , and if f = 0 then x is composite.

This bound of 1
2 might seem unsatisfactory, and we might want to improve it. One easy way

to improve it would just be to repeat the algorithm many times, which many different strings
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r. Repeating it t times would reduce the probability of a false positive to 2−t. On the other
hand the running time, and the number of random bits that we use will also increase by a factor
of t. It is intriguing to consider whether we can deterministically reduce this error, without
having to introduce any more random bits (whilst it might seem easy to produce random bits,
actually producing genuinely random strings in the quantity required for modern computing is
a non-trivial problem, and the amount of randomness needed by a random algorithm should be
considered a resource in much that same way memory space and computation time is).

These primality testing algorithms belong to a class of algorithms known as RP, the ran-
domised polynomial time algorithms. Let {0, 1}∗ denote the set of all finite binary strings. Then
we say a language L ⊆ {0, 1}∗ is in the class RP if there exists a randomised algorithm A with
a polynomial (in |x|) running time such that if x ∈ L, then A(x, r) = 1, whereas if x ̸∈ L then
the probability that A(x, r) = 1 is at most 1

16 (where 1
16 is chosen for notational convenience,

clearly it doesn’t matter what constant we choose here), where r is a uniformly chosen random
string of k bits, where k is polynomial in |x|. In this case we say that L has a (1-sided error)
randomised polynomial time membership algorithm.

Question 2.4. Assume that L has a (1-sided error) randomised polynomial time membership
algorithm. How many random bits are needed in order to reduce the probability of error to be
≤ ϵ?

Perhaps surprisingly we will see that using expander graphs we can achieve any desired level
of accuracy without using any additional random bits!

2.4 Magical graphs

In the previous section we presented three seemingly unrelated problems. We will now introduce
a new object, which we call amagical graph for now, that will allow us to solve all these problems.
These graphs exhibit an expansion property, a combinatorial isoperimetric inequality.

Let G = (L,R,E) be a bipartite graph, where L and R are the left and right vertex sets. We
say that G is an (n,m; d)-magical graph if |L| = n and |R| = m, every vertex in L has exactly
d neighbours in R (G is left regular), and

(1) |Γ(S)| ≥ 5d
8 |S| for all S ⊆ L with |S| ≤ n

10d ;

(2) |Γ(S) ≥ |S| for every S ⊆ L with |S| ≤ n
2 .

Note that, since the graph is d-left-regular, |Γ(S)| ≤ d|S|, and so ((1)) says that most sets
have almost the maximum amount of neighbours (up to a constant multiple) that they can have.
We obviously can’t ask for this to be true for sets of size much larger than n

d , and so ((2)) is
just asking that these larger size sets at least don’t have too bad ‘expansion’.

It was shown by Pinsker that such graphs (or at least, graphs with similar ‘expansion’ prop-
erties) do in fact exist. The proof is a novel ‘probabilistic’ proof of existence.

If people haven’t seen the probabilistic method before, the general idea is that in order to show
that an object with certain properties, we choose an object from the set of all objects according
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to some probability distribution, and bound from below the probability that the random object
satisfies these properties. If this probability is non-zero then we can deduce that at least one
object exists with the desired properties! In fact, as we will see, the proof shows that most
graphs will be magical.

Theorem 2.5. There exists a constant n0 such that for every d ≥ 32 and n ≥ n0, m ≥ 3n
4 there

exists an (n,m; d)-magical graph.

Proof. We take a set L of size n and a set R of size m and we choose a random bipartite (multi-
)graph by choosing, for each vertex v ∈ L a set of d neighbours, each chosen independently and
uniformly at random from R. We make this choice independently for each vertex v ∈ L. Since
the size of L and R are as desired, and the graph will be left d-regular, it remains to show that
properties ((1)) and ((2)) hold.

Let us deal with ((2)) first, as it is slightly simpler. S ⊆ L have cardinality n
10d < s := |S| ≤ n

2
and T ⊆ R with t := |T | = s. We are interested in the ‘bad’ events where Γ(S) ⊆ T , if such
an event occurs, then our graph is not magical. In other words, if we let XS,T be the indicator
random variable of the event that Γ(S) ⊆ T then we are interested in the random variable
X :=

∑
S,T XS,T , if X > 0 then the graph is not magical, and if X = 0 then the graph satisfies

((2)).

For any S and T it is easy to verify that E(XS,T ) = P(Γ(S) ⊆ T ) =
(

t
m

)sd
. Indeed, for each

v ∈ S the probability one of its neighbours lies in T is t
m and so the probability that N(v) ⊆ T

is
(

t
m

)d
, since these events are independent for different neighbours, and so the probability that

Γ(S) ⊆ T is
(

t
m

)sd
, since these events are independent for different v ∈ S.

Hence, by the union bound, and using the standard estimate that
(
n
k

)
≤
(
en
k

)k
, we see that

P(X > 0) ≤
∑
S,T

P(XS,T = 1) =
∑
S,T

(
t

m

)sd

≤

n
2∑

s= n
10d

(
n

s

)(
m

s

)( s

m

)sd

≤

n
10d∑
s=1

(en
s

)s (em
s

)s ( s

m

)sd
=

n
10d∑
s=1

(
e2nsd−2

md−1

)s

<
1

10
,

where the last inequality can be shown by showing that in this range the sth term is at most
20−s.

Property ((1)) can be shown via similar method. Let S ⊆ L have cardinality s := |S| ≤ n
10d ,

let T ⊆ R be a set of size t := |T | = 5ds
8 and let YS,T be the indicator random variable of the event

that Γ(S) ⊆ T . Then as before, if Y =
∑

S,T YS,T we have that G satisfy the fourth property if

and only if Y = 0. As in the previous case, for any fixed S and T , P(Γ(S) ⊆ T ) =
(

t
m

)sd
and so
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we can calculate

P(Y > 0) ≤
∑
S,T

P(YS,T = 1) =
∑
S,T

(
t

m

)sd

≤

n
10d∑
s=1

(
n

s

)(
m
5ds
8

)(
5ds

8m

)sd

≤

n
10d∑
s=1

(en
s

)s(8em

5ds

) 5ds
8
(
5ds

8m

)sd

<
1

10
,

where again the last inequality can be shown by (carefully) showing that in this range the sth
term is at most 20−s.

In particular

P(G is magic) = P(X = 0 and Y = 0) ≥ 1− (P(X > 0) + P(Y > 0)) ≥ 9

10
.

We note that a downside to the proof of Theorem 2.5 is that the proof of existence is non-
constructive. To resolve the problems fully we would need explicit constructions of such graphs.
The issue of finding such constructions is an important aspect of the field, and we will return to
it later, but for now let us present how we can solve our problems using the existence of these
magic graphs as a black box.

2.5 A super concentrator with O(n) edges

We will see how we can use these magical graphs to construct superconcentrators. These graphs
exhibit incredibly high connectivity, despite only having O(n) edges. The search for super
concentrators with n inputs and Kn edges with K as small as possible is still ongoing, and
has motivated some important advances in the area. The current best bound is from Alon and
Capalbo of K = 44.

A matching in a graph G is a set of pairwise vertex-disjoint edges. Given two subsets
X,Y ⊆ V (G) we say a matching M is from X to Y if every edge in M has one endpoint in X
and the other in Y , and each x ∈ X is contained in some edge in M .

We will use the following well-known result

Theorem 2.6 (Hall’s theorem). Let G = (X,Y,E) be a bipartite graph. Then G contains a
matching from X to Y if and only if |Γ(A)| ≥ |A| for all A ⊆ G

If G is an (n,m; d)-magical graph then |Γ(S)| ≥ |S| for every S ⊆ L with |S| ≤ n
2 . Hence, in

particular, if we look at the subgraph of G between S and R then, since every A ⊆ S has size
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at most |S| ≤ n
2 , we can conclude that |Γ(A) ≥ |A|. Hence this graph satisfies Hall’s condition,

and so there is a matching from S to Γ(S).

We will use this fact to recursively construct a super concentrator C ′ with n vertices on each
side. For n ≤ n0 suitably small we can simply take Kn,n which is clearly a superconcentrator
and has at most n0

2 n edges.

For n ≥ n0 we build our superconcentrator C ′ with n inputs and outputs using three building
blocks:

(i) Two copies G1 = (L1, R1, E1) and G2 = (L2, R2, E2) of an (n, 3n4 , d)-magical graph;

(ii) A superconcentrator C connecting the input set R1 to the output set R2. Note that, since
these sets have size 3n

4 < n, such a superconcentrator exists by assumption;

(iii) A perfect matching M between L1 and L2.

We consider the graph H with V (H) = L1∪R1∪L2∪R2 whose edge set is E(G1)∪E(G2)∪
E(C) ∪M . We claim that H is a super concentrator with input set L1 and output set L2, and
also that it only has linearly many (in n) edges.

So, let S ⊆ L1 be a set of input vertices and T ⊆ L2 be a set of output vertices such that
|S| = |T | = k. We wish to show that there are k vertex-disjoint paths between S and T in H.

If k > n
2 , then many vertices in S must be matched to vertices of T in the matching M ,

explicitly at least k− n
2 vertices. Deleting the matched vertices from S and T leaves two sets of

size at most n
2 .

Hence, it will be sufficient to show that we can find such paths when k ≤ n
2 without using

the edges of M . In this case, since G1 and G2 are magical, there are matchings M1 and M2 in
G1 and G2 from S to Γ(S) and T to Γ(T ), respectively. Let S′ and T ′ be the endpoints of these
matchings in Γ(S) ⊆ R1 and Γ(T ) ⊆ R2.

Since C is a super concentrator, and |S′| = |S| = |T | = |T ′| the set of input vertices S′ ⊆ R1

can be connected to the set of output vertices T ′ ⊆ R2 via a family of k vertex-disjoint paths in
C. Extending these paths by the matchings M1 and M2 we obtain a family of k vertex-disjoint
paths from S to T in C ′. It follows that C ′ is a super concentrator.

It remains to estimate the number of edges e(n) used in this construction. We obtain the
following recursion

e(n) ≤

{
2nd+ n+ e

(
3n
4

)
for n ≥ n0

n2 for n ≤ n0

.

Solving this recursion gives e(n) ≤ Kn where K only depends on d and n0, and so we have
a super concentrator with O(n) edges as desired.

A short word about computational aspects: If we have an algorithm to construct these
magical graphs which takes time t(n) then the above recursive construction will give an algorithm
which constructs a superconcentrator with input/output size n in time O(t(n)).

13



We also note that this is just one of a host of applications of expanders to network construction
problems. Another important one comes in the work of Ajtai, Komlos and Szemeredi, who build
what is called the AKS sorting network, which sorts n items using a very small number O(n log n)
of comparisons (and in particular each item is only involved in a small number O(log n) of
comparisons).

2.6 Construction of good error correcting codes

We will need the following useful property of magical graphs.

Claim 2.7. Suppose G is a (n, 3n4 , d)-magical graph and S ⊆ L is such that s = |S| ≤ n
10d . Then

there exists some vertex u ∈ R with a unique neighbour in S, i.e., such that |N(u) ∩ S| = 1.

Proof. Consider the number of edges between S and Γ(S), which we write as e(S,Γ(S)). On
the one hand, by left regularity, clearly e(S,Γ(S)) = ds. However, on the other hand, since by
(1) |Γ(S)| ≥ 5d

8 , the average number of neighbours that a vertex in |Γ(S)| has in S is at most
8
5 < 2. But, every vertex in Γ(S) has at least one neighbour in S, and hence there must be at
least one vertex in Γ(S) with exactly one neighbour in S (in fact, there has to be many).

We will use the magical graph G to construct a code C ⊆ {0, 1}n with rate at least 1
4 and

distance at least 1
10d . To this end, let us think of the graph G in terms of an n ×m matrix A

with rows indexed by L and columns by R where (A)ij = 1 if and only if the vertex i in L is
adjacent to the vertex j in R. Our code is given by the right kernel of A over F2

That is, C = {x ∈ {0, 1}n : Ax = 0}. Clearly C is a linear subspace of {0, 1}n and, since

m ≤ 3n
4 , it’s dimension is at least n

4 . In particular, |C| ≥ 2
n
4 . Hence the rate R = log |C|

n ≥ 1
4 as

claimed.

To prove a lower bound on the distance of the code, we note that, by the linearity of C, the
distance will be equal to the smallest size of a non-zero codeword, in other words, the smallest
support of a non-zero x ∈ C. Let x ̸= 0 have support S = {i ∈ L : xi = 1}. If |S| < n

10d then, as
we saw, there must be some j ∈ R such that |N(j)∩ S| = 1. But then (Ax)j = 1, and so x ̸∈ C!
It follows that for every x ∈ C, |x| ≥ n

10d and hence the distance δ of the code is at least 1
10d .

This is a special example of a so-called LDPC (Low density parity check) code. The idea
for such a code was first suggested by Gallagher, in fact predating and motivating the work of
Bassalygo, Pinsker and Margulis who first explicitly defined and cosntructed expander graphs.
Whilst falling out of favour for a while, these codes are now believed to have simultaneously the
best coding paramaters and algorithmic performance in various settings.

However we note that is is only in the last 20 years that the art of explicitly constructing
expanders has reached the point where the implementation of this simple argument is feasible.
We also note that this algorithm can also be shown to have very efficient (linear time) decoding,
and we will revisit them later in the course.

As in the previous application, the time complexity of constructing this magical graph is
dominating the time to construct the code here, driving home the point that as much as the
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existence of these graphs and codes, it is efficient algorithms to generate them which are inter-
esting. The next application calls for an even more concise and efficient description of these
graphs.

2.7 Deterministic error amplification

Recall that we have a language L ⊆ {0, 1}∗ which is in RP, so that L has a randomised polynomial
time membership algorithm with a 1-sided error, some function f which, given a string x and
a random string r, calculates a function f(x, r) such that f(x, r) = 1 whenever x ∈ L but
f(x, r) = 1 when x ̸∈ L with probability at most 1

16 .

To reduce the probability of error we will carry out dependent sampling of random strings
using these magical graphs. This comes from an idea of Karp, Pippenger and Sipser. Our goal
is to reduce the failure probability below some fixed threshold ϵ whilst using as few random bits
as possible. Let us fix x ̸∈ L and consider the set of ‘bad’ strings B = {r ∈ {0, 1}k : f(x, r) = 1},
those which fail on input together with x. We would like to make it very likely that one of the
strings r that we consider is not in B, however the only information we have about B ⊆ {0, 1}k
is that it is not too big, |B| ≤ n

16 where n = 2k.

For a given integer d we will give an algorithm for the membership problem which evaluates
f only d times and fails with probability ϵ ≤ 1

10d . Note, if we just choose a random string r each

time, then the failure probability is much smaller,
(

1
16

)d
. The advantage here will be that we

need to choose far fewer random strings.

Let G be an (n, n; d)-magical graph, where n = 2k as before, and identify L and R with
{0, 1}k arbitrarily. To decide whether a given string x ∈ L we first randomly sample a k-bit
string r ∈ L and let r1, . . . , rd ∈ R be its neighbours (note that whilst these are random, since
G is fixed, they are determined by the choice of r). We evaluate f(x, ri) for each i, and the
algorithm outputs 1 (so claims x ∈ L)) if f(x, ri) = 1 for all i, otherwise we say x ̸∈ L.

We want to bound then the probability of failure for an arbitrary input x. Clearly the only
way this algorithm can be wrong is if x ̸∈ L but f(x, ri) = 1 for all i, i.e., ri ∈ B for all i. In
other words, N(r) ⊆ B. Let S ⊆ L be the set of strings r such that N(r) ⊆ B, so that our
algorithm fails if and only if we chose r from S. It remains to estimate the probability that
r ∈ S (or, in other words, the size of S).

However, if |S| > n
10d then let S′ ⊆ S be of size exactly n

10d . In this case by (1) we have that

|Γ(S′)| ≥ 5d
8 |S

′| ≥ n
16 by our expansion property, however since Γ(S′) ⊆ Γ(S) ⊆ B,

|B| ≥ |Γ(S′)| ≥ n

16

or, in other words, the probability that f(x, r) = 1 is at least 1
16 , a contradiction! It follows that

|S| ≤ n
10d and so, the moment of magic, the probability that r ∈ S, which is the probability our

algorithm fails, is at most 1
10d .

By choosing d appropriately large, we can reduce the error as small as we like. The key point
here being that we only ever needed to choose the initial k-bit random string r!
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Unlike in the previous examples the size of the magical graph n is exponential in the size
of the problem considered (this parameter k). This means that to efficiently implement this
algorithm, our encoding of the magical graph will have to be much more efficient than in the
previous applications, we can’t hope to know the entire graph! Specifically, to ensure that our
computations happen in polynomial time, we will have to have an oracle which, given a k-bit
string r can generate the d neighbours of r in polynomial time. We will later see that even this
level of explicitness is achievable!

Also, we note that the reduction in error is rather inefficient in terms of the number of
strings we evaluate. By using random strings each time we achieve an exponential decay in the
failure probability. We will later see that a more refined dependent sampling procedure using
expanders, using still many fewer random bits, can achieve such an exponential decay in terms
of the number of evaluations.

Finally, we note that we were only dealing here with 1-sided errors. In practise, most stochas-
tic algorithms can fail on both inputs inside and outside of L, and the above strategy does not
work as written. However, we will later see that a small modification achieves the same level of
error reduction in this context as well.
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3 Graph expansion and eigenvalues

3.1 Edge expansion and a combinatorial definition of expansion

Unless we say explicitly otherwise, all graphs we consider with be regular, with regularity d, and
undirected. We will write |G| = n for the number of vertices and ||G|| = e for the number of
edges in a graph. Graphs are not necessarily simple, they may have multiple edges and loops.
We write E(S, T ) for the set of edges between S and T and e(S, T ) for the number of edges with
an endpoint in S and the other in T (formally, when S and T intersect we will count the edges
with both endpoints in S ∩ T twice in this quantity).

An important concept is the the edge boundary of S, ∂(S) = E(S, Sc), which gives rise to
the expansion ratio of G, denote by h(G), which is

h(G) = min
S : |S|≤n

2

|∂S|
|S|

.

so, a graph has a large expansion ratio (or in other words is a good expander) if every “small”
set of vertices has a large number of edges in it’s boundary.

The are a few important ways we can extend this definition. The first is to consider other
notions of boundary, such as the vertex boundary, giving rise to vertex expansion which we
discuss later. We can also consider expansion ratios as a function of the sets considered, either
changing in some continuous fashion, or as a ‘cut-off’ requiring expansion for only certain types
of sets.

Definition. A sequence of d-regular graph G1, G2, . . . where d is fixed and ni = |Gi| is increasing
with i is a family of expander graphs if there exists some constant α > 0 such that h(Gi) ≥ α
for all i.

We will concerned with the construction of families of expander graphs, and in particular
the explicit construction of such graphs. There are two particular notions of ‘explicitness’ that
we will keep in mind in this regard. In the first we require that the n-vertex graph can be
generated ‘from scratch’ in time polynomial in n. In the stronger version we instead require
that the neighbourhood of any given vertex be computable is time that is polynomial in the
description length of the vertex (which is usually polynomial in log n).

These definitions might seem at first a little odd, but they arise very naturally when con-
sidering the algorithmic implications of expander graphs, where the performance of algorithms
which use expanders will depend on efficiently obtaining the relevant information about the
graph structure of the expanders that are used.

Definition. Let (Gi) be a family of expander graphs such that the ni are not increasing too
quickly (for example ni+1 ≤ n2

i ).

(1) The family is called mildly explicit if there is an algorithm that generates the jth graph
in the family Gj is time polynomial in j.

(2) The family is called very explicit if there is an algorithm that on input of an integer i, a
vertex v ∈ V (Gi) and k ∈ [d] computes the kth neighbour of v in Gi, where this algorithm’s
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run-time should be polynomial in its input length (the number of bits needed to express
the triple i, v, k).

To demonstrate these definitions let us give briefly a description of two families of expander
graphs.

The first is a family of 8-regular graphs Gi, one for each integer i. The vertex set is the
discrete torus Zm × Zm and the neighbours of a vertex (x, y) are given by their image under
certain linear transformations (and their affine shifts). Explicitly we take the following matrices

T1 =

(
1 2
0 1

)
and T2 =

(
1 0
2 1

)
, and let e1 =

(
1
0

)
and e2 =

(
0
1

)
.

Then the neighbours of a vertex v = (x, y) are given by T1v, T2v, T1v + e1 and T2v + e2, as well
as the four neighbours of v obtained by the four inverse transformations, where all operations
are taken mod i.

This family of graphs, due to Margulis, is the first explicitly constructed family of expander
graphs. His original proof that they are expanders was based on representation theory (note
the algebraic definition of the graph) and did not give an explicit bound on the expansion ratio
h, although such a bound was later derived by Gabber and Galil using tools from harmonic
analysis. We will discuss these graphs in more detail later, and give a proof of their expansion
using discrete fourier analysis. Note that this family is very explicit - if you tell me the graph Gi

and a vertex (x, y), I can tell you very easily the neighbours of (x, y) in Gi (in fact in constant
time).

A second family is a family of 3-regular expanders Gi one for each prime number p. Here the
vertex set is Zp and a vertex x is connected to x + 1, x − 1 and x−1, where again calculations
are mod p.

Here the proof of expansion relies on some very deep number theoretical results, specifically
the Selberg 3/16 theorem, and we won’t discuss this is detail. However this family is only mildly
explicit, since in order to determine the structure of Gi we first have to actually determine pi
the ith prime.

3.2 Graph spectrum and an algebraic definition of expansion

As you might have guessed from the structure of the examples given, there are deep links between
graph expansion and algebraic structures. We will investigate these links further, giving an
algebraic definition for expansion.

The adjacency matrix of an n-vertex graph G, which we denote by A = A(G), is an n × n
matrix whose rows and columns are indexed by V (G) and whose uvth entry is the number of
edges in G between u and v.

Since A, by definition, is real and symmetric, it has n real eigenvalues whch we denote
by λ1 ≥ λ2 ≥ . . . ≥ λn, which we can associate with an orthonormal system of eigenvectors
v1, v2, . . . , vn where Avi = λivi for each i. We often refer to the eigenvalues of A as the spectrum
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of the graph (here we can think about the graph as this matrix A, which is an operator acting
on vectors in RV , or weightings on the vertices of V . As we will see, the action that this matrix
has can tell us a lot about the structure of the graph G).

For example the following simple facts, which we’ll prove on the exercise sheet

� λ1 = d and the corresponding eigenvector is v1 =
1√
n
1 = ( 1√

n
, 1√

n
, . . . , 1√

n
) := u;

� G is connected iff λ1 > λ2;

� G is bipartite iff λ1 = −λn.

More importantly for us, the graphs second eigenvalue is closely related to its expansion
parameter.

Theorem 3.1. Let G be a d-regular graph with spectrum λ1 ≥ λ2 ≥ . . . ≥ λn. Then

d− λ2

2
≤ h(G) ≤

√
2d(d− λ2)

This can be thought of as a discrete version of a famous theorem of Cheeger in Riemannian
geometry (we’ll talk more about this connection later) and was proved by Dodziuk, and Alon
and Milman. We’ll give a proof of this theorem later in course, but for now let us just note that
qualitatively it gives use a two-sided connection between the quantity d− λ2, or perhaps more
instructively λ1 − λ2, which we call the spectral gap and the quantity h(G). A lower or upper
bound on either will give us a bound on the other, and in particular h(G) is bounded away from
zero if and only if d− λ2 is (thinking of this in the context of a family of expander graphs).

3.3 The expander mixing lemma

Stronger information can be derived from considering a related quantity, which we denote by
λ = λ(G) = max{|λ2|, |λn|}, which can be seen to the be the largest absolute value of an
eigenvalue outside of |λ1| = d. If λ2 is small then the spectral gap is large, but here we insist
that all other eigenvalues are small in absolute value.

The following really useful lemma the relates this quantity λ to the distibution of edges in
the graph G.

Lemma 3.2 (Expander mixing lemma). Let G be a d-regular graph with n vertices and let
λ = λ(G). Then for all S, T ⊆ V∣∣∣∣e(S, T )− d|S||T |

n

∣∣∣∣ ≤ λ
√
|S||T |.

Before we prove this lemma, let us say a few words of interpretation. The left hand side
measures the difference between e(S, T ) and the ‘expected’ number of edges between S and T
in a random graph with the same density (each edge is present with probability d

n and there are
|S||T | many potential edges between S and T . Hence, when λ is very small, the deviation (or
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discrepancy) between these two quantities is small, and so the distribution of the edges in this
graph is very uniform, or close to random.

In some sense, many properties of random graphs can be shown to hold deterministically in
graphs where λ is small, and for this reason (and others) they are often known as pseudorandom
graphs. There are other, equivalent, more combinatorial definitions of pseudorandomness that
seem to imply that these graphs are a very natural object of study.

We also note that, whilst the bounds in Theorem 3.1 are quite far apart when the spectral gap
is much smaller than d (and so the expansion ratio is not perhaps very well tied to the spectral
gap), the relationship in the expander mixing lemma is much closer to being tight, demonstrating
a much closer relationship between λ and the distribution of edges in G, as demonstrated by
this very recent partial converse of the expander mixing lemma given by Bilu and Linial.

Lemma 3.3. Let G be a d-regular graph and suppose that there is some positive ρ such that for
all disjoint S, T ⊆ V ∣∣∣∣e(S, T )− d|S||T |

n

∣∣∣∣ ≤ ρ
√
|S||T |.

Then λ ≤ O
(
ρ
(
1 + log

(
d
ρ

)))
, and this bound is tight.

Let us give then a proof of the expander mixing lemma.

Proof of Lemma 3.2. Let 1S and 1T be the characteristic vectors of S and T in RV . That is,
(1S)v = 1 if v ∈ S and 0 otherwise. Let v1,v2, . . . ,vn be an orthonormal basis of eigenvectors
for the adjacency matrix and let us express 1S =

∑
i αivi and 1T =

∑
j βjvj .

We can count the number of edges from S to T in the following way

e(S, T ) = (1S)
TA1T = (

∑
i

αivi)
TA(

∑
j

βjvj).

However, since the vi are orthonormal eigenvectors of A, it follows that

e(S, T ) =
∑
i

λiαiβi.

Since α1 = ⟨1S ,v1⟩ = ⟨1S ,u⟩ = |S|√
n
, and similarly β1 =

|T |√
n
, and λ1 = d

e(S, T ) =
d|S||T |

n
+
∑
i≥2

λiαiβi.

Hence, ∣∣∣∣e(S, T )− d|S||T |
n

∣∣∣∣ ≤
∣∣∣∣∣∣
∑
i≥2

λiαiβi

∣∣∣∣∣∣ ≤
∑
i≥2

|λiαiβi| ≤ λ
∑
i≥2

|αiβi|.
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Finally then, by Cauchy-Schwartz, we can bound∣∣∣∣e(S, T )− d|S||T |
n

∣∣∣∣ ≤ λ
∑
i≥2

|αiβi|

≤ λ

√∑
i≥2

|αi|2
∑
j≥2

|βj |2

= λ||α||2||β||2
= λ||1S ||2||1T ||2 = λ

√
|S||T |.

In what follows it will sometimes be convenient to consider the normalised second eigenvalue
λ(G)
d . We will refer to d-regular graphs with n vertices as (n, d)-graphs, and if they further

have a normalised second eigenvalue of at most α, i.e., if λ(G) ≤ αd, then we refer to them as
(n, d, α)-graphs.

3.4 How large can the spectral gap be?

So, we will think of graphs with a large spectral graph, or equivalently a small λ2, as having good
expansion properties. It is natural to ask how large a spectral gap we can achieve in general.
Clearly this questions depends on the relationship between d and n. We are mostly interested
in the case where d is fixed, but n is growing. In this range the question is essentially answered
by this theorem of Alon and Boppana.

Theorem 3.4. Let d be fixed, then for every (n, d)-graph G

λ2(G) > 2
√
d− 1− on(1).

To illustrate how things can differ when d can grow as a function of n, consider the complete
graph on n vertices, which we denote by Kn, which has d = n−1. Clearly the adjacency matrix
A(Kn) = J − I where J is the all-ones matrix and I is the identity.

It is an exercise in elementary linear algebra to show that the spectrum of Kn is give by
λ1 = n− 1 and λi = −1 for all i ≥ 2, and hence λ2(Kn) = 1 is much smaller than

√
d ≈

√
n.

We will discuss the bound more and give a proof later in the course, but for now let us give
a simple argument for a slightly weaker statement.

Lemma 3.5. For every (n, d)-graph G

λ(G) ≥
√
d(1− on(1)).

Proof. Let A be the adjacency matrix of G. It is relatively easy to show that the trace of Ak is
the number of closed walks of length k in G. In particular, tr(A2) ≥ dn. Indeed, for each vertex
and each edge incident to that vertex we can form a closed walk of length 2 by moving back and
forth along that edge.
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On the other hand
tr(A2) =

∑
i

λ2
i ≤ d2 + (n− 1)λ2.

Rearranging gives λ2 ≥ dn−d
n−1 = d(1− on(1)).

3.5 Four perspectives on expansion

We’ve now developed enough of the background to give a bit of a broader view of the main
questions and topics that we’re going to cover in the course.

As we’ve seen expansion can be defined in a purely combinatorial manner, but is closely
related to the spectral theory of graphs. As we shall see shortly, another equivalent probabilistic
way to think about expansion will come from rapidly mixing random walks.

In each of these frameworks we’ll consider mostly four types of questions

� Extremal: How large/small can the relevant expansion parameters be?

� Typical: How are these parameters distributed in a typical/random graph?

� Explicit Construction: Can one construct graphs for which these paramaters (nearly)
obtain their optimum?

� Algorithmic: Given a graph, can you efficiently evaluate/estimate its expansion param-
eters?

It also will be natural to consider some comparative questions: What can we conclude about,
say, combinatorial expansion paramaters from spectral information etc.

Let us start in the next section by introducing this probabilistic perspective to expansion.
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4 Random walks on expanders graphs

If we take a random walk on a graph (choosing uniformly a random neighbour in each step) then
our position at time t is some probability distribution on the vertices of the graph (depending
on the starting vertex). It’s not too hard to show that, independent of the starting vertex, for
a long enough walk this distribution approaches a limiting distribution, which will in fact be
uniform for an (n, d)-graph.

In other words, one way to approximate a random sample of a vertex in a graph is to take
a long enough random walk. A key property of expander graphs is that the random walk
converges very quickly to this limiting distributing which we call the stationary distribution,
and so in order to choose a random sample, it’s sufficient to take a random walk of quite a short
length.

In many theoretical, and practical, problems one needs to draw samples from some distri-
bution F on a finite (but very large) set V . One way to do so is to consider a graph with
vertex set V so that the stationary distribution on G is F . A clever choice of G can guarantee
that it is feasible to efficiently simulate this random walk and furthermore that the distribution
given by the walk rapidly converges to L. This type of method, in some contexts known as the
“Monte-Carlo” method, pops up in various fields such as statistical physical and combinatorial
optimisation.

The main idea behind this chapter will be that the set of vertices visited by a length t
random walk on an expander will ‘look like’ (in some sense) a set of t vertices sampled uniformly
and independently from the graph. The computational signifance of this is that the number of
random bits required to generate a length t walk on a d-regular graph is significantly smaller
than the number of random bits required to sample t random vertices when d ≪ n.

4.1 Rapid mixing of walks

A walk on a graph G = (V,E) is a sequence of vertices v1, v2, . . . , such that vi+1 is a neighbour of
vi for each i. If vi+1 is selected uniformly at random from among vi’s neighbours, independently
for each i, this is called a random walk on G.

It is a well-known fact that for every finite connected non-bipartite graph G the distributions
πi converge to a limit, or stationary distribution, and it is easy to show that this distribution
depends only on the degree of the vertex (and so in particular is uniform on regular graphs). In
this subsection we are interested in how quickly this distribution converges to the limit. There
are several sensible/interesting ways to measure the distance between distributions, and we will
consider a few different norms and entropy measures. The main point is that in an expander
the distance to the uniform measure shrinks substantially with every step of the random walk,
and in fact this condition in some way characterises quantitatively graph expansion.

Let us begin by making a few useful definitions. A vector p ∈ RV is called a probability
distribution vector if pi > 0 for all i and

∑
i pi = 1. The uniform distribution is given by

u = 1
n(1, 1, . . . , 1).

Definition. A random walk on a finite graph G = (V,E) is a discrete-time stochastic process
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(X0, X1, . . .) taking values in V . The vertex X0 is sampled from some initial distribution π1 on
V , and Xi+1 is chosen uniformly at random from the neighbours of Xi. We write πi for the
distribution of Xi.

If G is a d-regular graph with adjacency matrix A then its normalised adjacency matrix is
given by Â = 1

dA. Here are some simple comments on this random walk:

� The random walk on G is a Markov chain with state set V and transition matrix Â.

– A Markov chain is a sequence (X1, X2, . . . , ) of random variables such that for any n
and x1, x2 . . . , xn

P(Xn = xn|X1 = x1, X2 = x2, . . . , Xn−1 = xn−1) = P(Xn = xn|Xn−1 = xn−1),

when both conditional probabilities are well defined, i.e., it is a memoryless stochastic
process.

� Â is real, symmetric and double stochastic (all row and column sums are equal to one).

� If λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n are the eigenvalues of Â then λ̂i =
λi
d for all i, and the eigenvectors

are the same. In particular λ̂1 = 1 and if G is an (n, d, α)-graph then max{|λ̂2|, |λ̂n|} ≤ α.

� If we sample a vertex x from some probability distribution p on V and then move to a
random neighbour y of x, the resulting probability distribution on V is given by Âp.

� The matrix Ât is the transition matrix of the Markov chain defined by random walks of
length t. In other words, (Ât)ij is the probability that a random walk starting at i is at j
after t steps, and so πi = Âiπ1.

� The stationary distribution of the random walk on G is the uniform distribution, namely,
uÂ = Âu = u.

4.1.1 Convergence in the ℓp norms

The inner product of two vectors x,y ∈ Rn is denote by

⟨x,y⟩ =
∑
i

xiyi.

Given p ≥ 1 the ℓp norm is given by

||x||p =

(∑
i

|xi|p
) 1

p

,

where it is a simple exercise, using for example Jensen’s inequality, to check that this is a
norm. These are discrete versions of the Lp norms from functional analysis. We are particularly
interested in the following special cases

� ||x||1 =
∑

i |xi|;
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� ||x||2 =
√∑

i |xi|2;

� ||x||∞ := maxi{|xi|} = limp→∞ ||x||p.

Our first useful observation is that if G is an (n, d, α)-graph and α < 1, then regardless of
the initial distribution π1, the random walk converges in ℓ1 exponentially fast to its limiting
distribution u. This will in fact follows from a similar bound in ℓ2, which follows from the fact
that in ℓ2 the distance to the uniform distribution will shrink by a factor of α at each step.

Lemma 4.1. Let G be an (n, d, α)-graph with normalised adjacency matrix Â. Then for every
probability distribution vector p,

||Âp− u||2 ≤ α||p− u||2 ≤ α.

Proof. We first note that the uniform distribution u is invariant under the action of Â. So,
in particular, u is an eigenvalue of Â with eigenvalue one, and all other eigenvalues of Â have
absolute value at most α. Hence it follows that if x is orthogonal to u then

||Âx||2 ≤ α||x||2.

However,

⟨u,p− u⟩ = ⟨u,p⟩ − ⟨u,u⟩ =
∑

i pi
n

−
∑

i 1

n2
=

1

n
− 1

n
= 0,

and so u is orthogonal to p− u. It follows that

||Âp− u||2 = ||Â(p− u)||2 ≤ α||p− u||2 ≤ α,

where the last line follows from the fact that

||p− u||22 = ⟨p− u,p− u⟩ = ⟨p− u,p⟩ = ||p||22 − ⟨p,u⟩ = ||p||22 −
1

n
≤ 1− 1

n
,

since ||x||22 =
∑

i x
2
i ≤

∑
i xi = 1 for all probability distribution vectors.

A simple consequence of repeated applications of Lemma 4.1 is the following:

Theorem 4.2. Let G be an (n, d, α)-graph with normalised adjacency matrix Â. Then for any
probability distribution vector p and any positive integer t

||Âtp− u||2 ≤ αt||p− u||2 ≤ αt.

Again as a simple consequence we obtain the following ℓ1 bound.

Theorem 4.3. Let G be an (n, d, α)-graph with normalised adjacency matrix Â. Then for any
probability distribution vector p and any positive integer t

||Âtp− u||1 ≤
√
nαt.
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Proof. A simple application of the Cauchy-Schwarz inequality show that for any vector x ∈ Rn

||x||21 =

(∑
i

|xi|

)2

=

(∑
i

1 · |xi|

)2

≤

(∑
i

1

)(∑
i

|xi|
1
2

)
= n||x||22.

Hence, by Theorem 4.2 we have that

||Âtp− u||1 ≤
√
n||Âtp− u||2 ≤

√
nαt.

In particular, once t ≫ log n, the bound
√
nαt ≪ 1 and so the random walk will be very

close to uniform.

Why are we particularly interested in the ℓ1 norm? Well, it’s reasonably common to measure
the distance between two probability distributions p and q on a set X in terms of their total
variation distance

dTV (p, q) = max
B⊆X

|Pp(B)− Pq(B)| = 1

2
||p− q||1.

To put it another way, if the ℓ1 distance between two distribution is sufficiently small, then
the two distributions assign nearly equal probabilities to every event in the probability space.

4.1.2 Convergence in entropy

Another important perspective of a random walk is offered by the entropy of the associated
probability distributions. the concept of entropy is a fundamental concept in theory of commu-
nication, capturing the amount of ‘information’, or alternatively ‘uncertainty’, that a distribution
carries. When we take a random step in our random walk we ‘inject’ a little bit more random-
ness into our distribution πi, indeed precisely the log d random bits that are necessary to specify
which of the d neighbours of our current vertex we travel to.

One should expect that this injection increases the amount of randomness in the distribution.
Note that, in some ways the uniform distribution is the ‘most random’ distribution, whereas as
we approach a distribution which is supported on fewer and fewer points we are becoming closer
and closer to deterministic. Hence, we should expect that each step increases the entropy of the
distributions πi, and makes them closer to uniform. This turns out to be true in fact in any
regular graph, and expanders are the graphs for which this increase is significant.

The entropy viewpoint will be important as a heuristic later in the course, in particular
for the zig-zag construction and its use in constructing various types of expanding graphs and
computational frameworks.

In the same way that different norms capture different aspects of the probability distributions,
there are several variations on the theme of entropy. Given a probability distribution p on [n]
we define:
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� Shannon entropy: H(p) = −
∑

i pi log(pi).

� Rényi 2-entropy: H2(p) = −2 log (||p||2).

� Min entropy: H∞(p) = − log (||p||∞).

As with the p-norms, there is in fact a family of entropies Hα for α > 1 and the Shannon entropy
is the limit as α → 1, whereas the min entropy is the limit and α → ∞. We note in particular
that

Proposition 4.4. For any probability distribution p on [n]

H∞(p) ≤ H2(p) ≤ 2H∞(p).

Proof. This follows from the fact that

max
i

pi = max
i

pi

(∑
i

pi

)
≥
∑
i

p2i ≥ max
i

p2i .

We note also that H1(p) ≥ H2(p) ≥ H∞(p), the first of which follows from Jensen’ inequality.
Hence the min entropy is the strongest measure of randomness, if H∞ is large then so is H2 and
H1, whereas there are distribution with a fixed min entropy for which the shannon entropy is
arbitrarily large. This concept of min entropy will turn out to be useful later when we discuss
objects known as randomness extractors.

These measures of randomness do share a some basic properties, which we collect below,
writing H̃ for a ‘generic’ entropy measure

� H̃(p) ≥ 0 with equality iff the distribution is supported on a single element.

� H̃(p) ≤ log n with equality iff the distribution is uniform.

� For any doubly stochastic matrix X (non-negative entries with row and column sums equal
to one), H̃ (Xp) ≥ H̃(p), with equality iff p is uniform.

An immediate consequence of this final statement is that the entropy of the distributions
πi increase with every step of the random walk on a regular graph. Making this statement
quantitative depends on the particular choice of entropy measure. Below we will do so for the
H2 measure, which will be simple due to it’s relation to the ℓ2 norm. However we note that
since the H2 and H∞ measures are at a most a constant multiple away from each other, the
same qualitative statement will hold for the H∞ measure, which will be useful for us later.

For the Shannon entropy H1 the precise relationship between the increase in H1 in each step
of a random walk and the spectral constant α is not known. However, there is a closely related
constant, known as the Log-Sobolev constant, which in some way is related to this per step
increase in energy, and there are known quantitative relations between it and α.
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We will decompose our arbitrary distributions as p = u + f where f ⊥ u. We define a
measure µ of how close p is to the uniform distribution via µ = ||f ||

||p|| ≤ 1 (here and in what

follows using the 2-norm), so that µ = 1 iff p is uniform.

Then, noting that Âf ⊥ u and ||u||2 = ||p||2 − ||f ||2 = (1− µ2)||p||2,

||Âp||2 = ||Â(u+ f)||2 = ||u+ Â(f)||2 = ||u||2 + ||Âf ||2 ≤
(
(1− µ2) + α2µ2

)
||p||2.

Hence,

H2

(
Âp
)
= log2

(
||Âp||2

)
≥ log2

((
(1− µ2) + α2µ2

)
||p||2

)
= H2 (p)− log

(
1− µ2) + α2µ2

)
= H2 (p)− log

(
1− (1− α2)µ2

)
.

It follows that the 2-entropy of the sequence π1,π2, . . . is non-decreasing, and in fact is
strictly increasing as long as the distributions πi are not uniform. Furthermore, for better
expanders (i.e., smaller α) the 2-entropy is growing faster.

4.2 Random walks resemble independent sampling

The general setup we will consider is an abstract sampling problem in which an unknown set
B in a universe V of size n is ‘bad’ in some sense, and we want to sample the universe so as to
avoid the bad set as much as possible. In particular, we’re interested in doing so in an efficient
way with regards to the number of random bits that we used.

In the introductory lecture, the set B represented the set of bad choices for a probabilistic
algorithm, namely those for which the output disagreed with ground truth. Already there we
saw the advantages of imposing, without any particular respect to the underlying universe, an
expander graph structure on V . Here we will develop this idea further and show that, using
such ideas, we can choose a sample from V based on a random walk in the graph. Perhaps
surprisingly, the chance of hitting B with this (highly dependent) sample, will be very close to
the probability of hitting B with a completely independent sample, where the quantitative truth
of this statement will depend on the degree and expansion of the underlying expander graph.

Suppose then that we have an (n, d, α)-graph G = V (, E) where the vertices in some subset
B ⊆ V are ‘bad’. All we know about B is its cardinality |B| = βn. As in our previous example
with 1-sided errors, we wish to sample at least one vertex outside of B. If we uniformly sample
t + 1 vertices x0, x1, . . . , xt from V , then the probability that we ‘fail’, and fail to sample a
vertex outside of B, is clearly βt+1. Whilst this is tending to 0 exponentially fast, we have to
use (t + 1) log n random bits to make our sequence of samples. We will see that a similar level
of accuracy can be obtained using substantially fewer bits. The basic idea will be to sample a
starting vertex v uniformly, and take the vertex set of a random walk of length t from v as our
sample. We will find that the chance of failure in this set-up will still be exponentially small in
t.
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In particular, to achieve an error rate of ≤ ϵ we only need to use log n + O
(
log 1

ϵ

)
many

random bits, as opposed to O
(
n log 1

ϵ

)
many random bits. Note that the number of extra bits

to achieve this improvement is now independent of |V | = n!

As a starting point let us interpret the expander mixing lemma as the case t = 1 of this
approach. The conclusion of the lemma is that, for any subsets S, T ⊆ V (G) of an (n, d, α)-
graph, ∣∣∣∣e(S, T )− d|S||T |

n

∣∣∣∣ ≤ λd
√

|S||T | ≤ αdn.

It will be useful to rewrite this as ∣∣∣∣e(S, T )dn
− |S||T |

n2

∣∣∣∣ ≤ α.

Let us imagine two different experiments. In the first we sample an ordered pair (i, j) of
vertices uniformly in V 2 and call it a success if i ∈ S and j ∈ T . Clearly the probability of
success is |S||T |

n2 .

In the second experiment we randomly pick i ∈ V and then choose j uniformly from the
neighbours of i. This time the probability of success is∑

s∈S,t∈T
P(i = s, j = t) =

∑
s∈S

P(i = s)
∑
t∈T

P(j = t|i = s) =
∑
s∈S

1

n

∑
t∈T

1

d
1t∼s

=
1

dn

∑
s∈S,t∈T

1t∼s =
|E(S, T )|

dn
.

The expander mixing lemma then tells us that the success probabilities of these two, very
different, methods of picking a pair of vertices are approximately equal, they differ by at most
α.

Let us extend this intuition to longer random walks. Let us fix a (n, d, α)-graph G and a
subset B ⊆ V of cardinality |B| = βn. We consider the following stochastic process: Let X0 ∈ V
be chosen uniformly at random and then perform a random walk X0, X1, . . . , Xt of length t on
G. Denote by (B, t) the event that the random walk is confined to B, i.e., Xi ∈ B for all i.

Theorem 4.5 (Ajtai-Komlós-Szemerédi and Alon-Feige-Widgerson-Zuckerman). Let G = (V,E)
be an (n, d, α)-graph and let B ⊆ V be a subset of cardinality |B| = βn. Then for any t ∈ N

P((B, t)) ≤ (β + α)t.

Note that, if we picked the vertices X0, X1, . . . , Xt the probability would only be slightly
smaller, βt.

Let P = PB be the orthogonal projection on the subspace of coordinates belonging to B
(working over RV ). In other words, Pij = 1 if i = j ∈ B and 0 otherwise. We will use the
following simple observation.

Lemma 4.6. The probability of the event (B, t) be can expressed as

P((B, t)) =
∥∥∥(PÂ)tPu

∥∥∥
1
.
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Proof. The entry (Ât)xy is the number of walks of length t from x to y divided by dt, which
can alternatively be thought of as the probability of reaching y from a random walk of length
t started at x. If we consider instead (PÂ)t then the effect of the projection is that we only
consider walks which are confined to B (after their first vertex). Hence if we apply (PÂ)t to

Pu then we get a vector supported on B, such that for each b ∈ B,
(
(PÂ)tPu

)
v
is 1

n times the

probability that a random walk starting at v is confined to B, or in other words, the probability
that X0 = v and Xi ∈ B for all i.

In particular ∥∥∥(PÂ)tPu
∥∥∥
1
=
∑
v∈B

(
(PÂ)tPu

)
v
= P((B, t)).

We also need the following lemma.

Lemma 4.7. For any vector v ∥∥∥PÂPv
∥∥∥
2
≤ (β + α)||v||2.

Proof. Note that, if we replace v with Pv then, since P is idempotent, the left hand side is
unchanged, whereas the right hand side becomes smaller since P is a contraction in ℓ2. Hence
we may assume that v is zero outside of B.

Similarly, we may assume that v is non-negative, and by the linearity of both sides we can
assume that ||v||1 = 1, and so

Pv = v =
⟨v,u⟩
⟨u,u⟩

u+ z = u+ z

where z ⊥ u.

It follows that
PÂPv = PÂu+ PÂz = Pu+ PÂz.

and so ∥∥∥PÂPv
∥∥∥
2
≤ ∥Pu∥2 +

∥∥∥PÂz
∥∥∥
2
.

We claim that ∥Pu∥2 ≤ β||v||2 and
∥∥∥PÂz

∥∥∥
2
≤ α||v||2, which together imply the claim.

For the first, since ||v||1 = 1, and the support of v has size ≤ |B| ≤ βn, it follows from the
Cauchy-Schwarz inequality that

1 = ||v||1 =
∑
i∈B

1 · vi ≤
√∑

i∈B
1 ·
√∑

i∈B
v2i =

√
βn||v||2.

However, since ∥Pu∥2 =
√

β
n it follows that

∥Pu∥2 ≤ β||v||2.
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For the second, we note that∥∥∥PÂz
∥∥∥
2
≤
∥∥∥Âz

∥∥∥
2
≤ α||z||2 ≤ α||x||2

using the fact that P is a contraction in ℓ2, that z is orthgonal to u and so a combination of
eignenvectors of Â of eignenvalue at most α in modulus, and finally that x is the orthogonal
sum of u and z and hence ||z||2 ≤ ||z||2.

Using these two lemmas we can prove Theorem 4.5.

Proof of Theorem 4.5. By Lemma 4.6, Cauchy-Schwarz and Lemma 4.7 and we have that

P((B, t)) =
∥∥∥(PÂ)tPu

∥∥∥
1

≤
√
n
∥∥∥(PÂ)tPu

∥∥∥
2

≤
√
n(β + α)t ∥u∥2

= (β + α)t.

Theorem 4.5 shows that, for a good enough expander, the probability that a random walk of
length t is contained in B is not much larger than the probability that a random sample of t+1
points is contained in B. There are two slight deficiencies with this argument, the first is that
we are ‘missing’ a factor of β, and also we don’t have a corresponding lower bound. We state
without proof the following tighter version (it is perhaps best to think of β as being fixed, and
α as being potentially much smaller).

Theorem 4.8. If β > 6α, then

β(β + 2α)t ≥ P((B, t)) ≥ β(β − 2α)t.

We note that it is also possible to derive “time dependent’ versions of the upper bound in
Theorem 4.5 (using simple adaptations of the proof), which we will need later in the course.

Theorem 4.9. Let G = (V,E) be an (n, d, α)-graph and let B ⊆ V be a subset of cardinality
|B| = βn. Then for any t ∈ N and any subset K ⊆ {0, 1 . . . , t}

P(Xi ∈ B for all i ∈ K) ≤ (β + α)|K|−1.

Occasionally we will also have to deal with a situation where the excluded set of vertices
depends on the time step, for which the following version is also useful.

Theorem 4.10. Let G = (V,E) be an (n, d, α)-graph, t ∈ N and let B0, B1, . . . , Bt ⊆ V be
subsets of cardinality |Bi| = βin. Then

P(Xi ∈ B for all i ∈ [t]) ≤
t−1∏
i=0

(√
βiβi+1 + α

)
.
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This again follows from a slight adaptation of the previous arguments, using the fact that,
writing Pi for the projection onto Bi

P(Xi ∈ B for all i ∈ [t]) =

∥∥∥∥∥
t∏

i=1

(
PiÂ

)
P0u

∥∥∥∥∥
1

and
∥∥∥Pi+1ÂPiv

∥∥∥
2
≤
(√

βiβi+1 + α
)
||v||2.

As before, this simple approach seems to give away a factor of
√
β0βt, which is important for

certain applications.

4.3 Applications

4.3.1 Efficient error reduction in probabilistic algorithms

We return to the topic raised in the Introduction of reducing the error in probabilistic algorithms
‘efficiently’ (with respect to the number of extra random bits used).

Let A be a probabilistic algorithm for a language L ⊆ {0, 1}∗. Let us first deal with the
simple case of one-sided errors, where A can only make errors on inputs x ̸∈ L, in which case L
is in the class RP . We will then deal with the case where A can make errors on inputs both
inside and outside of L, in which case L is in the corresponding class BPP .

Recall that our ‘benchmark’ is given by simply repeating the algorithm t many times on the
same input x with independent random strings r1, . . . , rt ∈ {0, 1}k, where the output is given by
the conjunction of the answers in the one-sided error case. In the two-sided error case it makes
more sense to take the majority opinion as the output.

In both cases the error probability is decreasing exponentially in t, whereas the number of
extra bits is increasing linearly in kt. We will show how to achieve an exponential reduction in
the error probability in both cases using many fewer random bits.

One-sided error : Let A then be a 1-sided error randomised polynomial time membership
algorithm for the language L ∈ RP . Given x ∈ {0, 1}m the algorithm samples a string r ∈
{0, 1}k uniformly at random, where k is polynomial in |x|, and computes a boolean function
A(x, r) such that A(x, r) = 1 if x ∈ L and A(x, r) = 1 with probability at most β if x ̸∈ L.

Let G = (V,E) be an (n, d, α)-graph with V = {0, 1}k, with α sufficiently small compared to
β. Note that the choice for α will put a lower bound on d (we will see later that we can take
d = O(α−2)).

Given x ̸∈ L let B(x) ⊆ {0, 1}k be the of strings r such that A(x, r) = 1, where |B(x)| ≤ β2k.
Let A′ be the following membership algorithm:

(1) Choose v0 ∈ V uniformly at random;

(2) Take a random walk (v0, v1, . . . , vt) in G of length t starting at v0;

(3) Return
∧t

i=1A(x, vi).
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Note that for this algorithm A′ to be efficient, it has to be possible to efficiently compute the
random walk, hence the importance of G being able to find explicit G.

By Theorem 4.5 the probability that A′ will fail, which is the probability that vi ∈ B for
each i, is at most (β +α)t. Compared to the naive algorithm from the Introduction, we achieve
an exponential reduction in error probability, whilst only using m+ t log d = m+O(t) random
bits.

Two-sided error : We will show that the same trick can amplify the success probability
of a randomised membership algorithm that makes errors on all types of inputs. More formally,
a language L belongs to the class BPP if there is a polynomial time randomised algorithm A
to decide whether a given input x belongs to L which is incorrect with probability at most β.
As before we can reduce our error probability by running A multiple times on independently
sampled strings and taking a majority vote. That is, we sample t strings r1, r2, . . . , rt uniformly
and independently and we look at the numbers A(x, r1), A(x, r2), . . . , A(x, rt). If more than half
of them are one then we say that x ∈ L and if more than half of them are zero we say that
x ̸∈ L.

How accurate will this algorithm be? Well, if x ∈ L then the number of ones is distributed
as Bin(t, 1− β), and similarly if x ̸∈ L the number of zeroes is distributed as Bin(t, 1− β), and
so this is really a question about the tails of the binomial distribution P(Bin(t, 1− β) > ∆).

A standard bound is the Chernoff bound, which tells us that, under the right parameterisa-
tion, these tails decrease exponentially.

Lemma 4.11. Let X ∼ Bin(n, p), let 0 ≤ δ ≤ 1 and let µ := E(X) then

P(|X − µ| ≥ δµ) ≤ exp

(
−δ2µ

3

)
.

It follows that the probability that A′ fails is shrinking exponentially in t. More precisely

P(A′ fails) = P
(
bin(t, 1− β) ≤ t

2

)
≤ P

(
|Bin(t, 1− β)− (1− β)t| ≥

(
1

2
− β

)
t

)
≤ exp

(
−
(
1
2 − β

)2
(1− β)t

3

)
.

To save on randomness we can again use random walks on an expander graph.

As before, let us suppose we have an input x ∈ {0, 1}m for which A uses k-bit random strings
r ∈ {0, 1}k and let G be an (n, d, α)-graph with vertex set V = {0, 1}k. Again, let B(x) be the
set of strings for which A(x, r) gives the wrong output. Our modified algorithm A′ then works
as follows:

(1) Choose v0 ∈ V uniformly at random;

(2) Take a random walk (v0, v1, . . . , vt) in G of length t starting at v0;

(3) Return majority{A(x, vi) : 0 ≤ i ≤ t}.
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The algorithm will then fail only if a majority of the vis belong to B(x). Fix a set of indices
K ⊆ {0, 1, . . . , t} of cardinality |K| ≥ t+1

2 . Then by Theorem 4.9 the probability that vi ∈ B for

all i ∈ K is at most (β + α)|K|−1 ≤ (β + α)
t−1
2 .

Assuming that β +α is small enough (less than 1
8 say) we be apply the union bound over all

possible choices of K to conclude that

P(A′ fails) ≤ 2t(β + α)
t−1
2 ≤ 2t2

−3(t−1)
2 ≤ 2

√
22−

t
2 .

So, again we achieve an exponential reduction in the error probability using only m + O(t)
random bits.

In general, this idea that a random walk on an expander graph gives a good approximation
of a random set can be used in many algorithmic applications, for example it gives a quick and
easy way to approximate the average of any function over a space.

4.3.2 Hardness of approximating maximum clique size

We now turn to a different application of random walks on expanders to computational com-
plexity, showing how they are used in enhancing hardness of approximation factors of the clique
problem. Let’s begin with a little background on hardness of approximation.

A clique in a graph G is a subset S ⊆ V (G) in which all pairs of vertices are adjacent.
The clique number, denoted ω(G), is defined as the largest size of a clique in G. It is an
important computational problem to be able to compute, or estimate this parameter of a graph.
Specifically, given a graph G and an integer k we are asked to determine whether ω(G) ≥ k.

There is no known subexponential (on all inputs G and k) algorithm for this problem, and it
seems unlikely that one will exist. Indeed, determining the clique number of a graph is known to
be NP -hard, if there is a polynomial time algorithm to compute the clique number of a graph,
then there is a polynomial time algorithm to solve every problem in NP , i.e., P = NP (which,
as far we know, seems unlikely to be the case). Here, roughly, P is the class of ‘yes-no’ problems
which can be solved in polynomial time, whereas NP is the class of ‘yes-no’ problems whose
solutions can be ‘verified’ in polynomial time. There are many natural and important problems
which are known to be NP -hard.

When it is hard to find an optimum solution to a problem (i.e., the size of the largest clique),
a natural relaxation is to seek an approximate solution. A famous result in the 90s, the so called
PCP theorem, which in some way says that solutions to problems in NP can be checked very
efficiently by a randomised algorithm, implies that for many difficult optimisation problems, it
is still difficult to approximate their solutions (unless P = NP ). In particular, it is hard to
approximate ω(G) to even a constant factor.

Theorem 4.12 (Feige-Goldwasser-Lovász-Safra-Szegedy). There are constants 0 < δ2 < δ1 < 1
such that it is NP -hard to decide for a given n vertex graph whether ω(G) ≥ δ1n or ω(G) ≤ δ2n.

(that is, the problem of determining for any graph for which one of the two hold, which
holds, is NP -hard). In fact, the simplest form of the PCP theorem is almost equivalent to
this statement.
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The purpose of this section will be to show that even obtaining a very rough approximation
to ω(G) is still NP -hard. More precisely, we will show that it is NP -hard to approximate ω(G)
to within a (multiplicative) factor of nϵ for some fixed ϵ > 0.

Theorem 4.13. There exists a constant ϵ > 0 such that, if there exists a polynomial time
algorithm A whose output on every n-vertex graph G satisfies

n−ϵω(G) ≤ A(G) ≤ nϵω(G),

then P = NP .

The idea of the proof will be that if such an algorithm A existed, we could use it to create
an efficient algorithm B to approximate the clique number to within a constant factor. Such a
conversion is called a reduction. If this reduction is deterministic, then the existence of algorithm
B would imply by Theorem 4.12 that the NP -hard problem of approximating the clique number
to within a constant factor had a polynomial time solution, and hence P = NP .

We will first present a probabilistic reduction between the two problem, so that the algorithm
B is a randomised algorithm with 2-sided errors. Note that this would still has interesting
complexity consequences, namely that the existence of A would imply that NP ⊆ BPP .
Moreover, it is a relatively standard fact (using the self-reducibility of NP -hard problems) that
the inclusion NP ⊆ BPP implies that NP ⊆ RP . After describing this reduction we will
show how to eliminate the randomness from B, for which we will use walks on expander graphs.

We note that, in fact, a much stronger hardness result is known about approximating the
clique number, which requires much more advanced techniques. Indeed, Hastad showed that
efficiently approximating ω(G) to within a factor of n1−δ for any δ > 0 would imply that
RP = NP , and quite recently this was derandomised by Zuckerman to show that such an
approximation is even NP -hard. Note that, a factor n approximation is trivial, so this result
is essentially tight!

The probabilistic reduction:

We wish to convert an algorithm A for approximating ω(G) to within a factor of nϵ to a
probabilistic algorithm B to distinguish between the two cases of Theorem 4.12. In order to
apply B to a given n-vertex graph G = (V,E), consider a graph H with vertex set V t where
t = log n. Two vertices (v1, v2, . . . , vt) and (u1, u2, . . . , ut) will be adjacent in H if the subgraph
of G induced on {v1, v2, . . . , vt, u1, u2, . . . , ut} is a clique. It will turn out that the property of
ω(G) being below δ2n or above δ1n will be amplified significantly in H, and this amplification
is so strong that a random subset of m = poly(n) vertices in H tends to behave very differently
with respect to the clique number of the induced graph.

Algorithm B then works as follows:

(1) Choose m random vertices from V t and compute the subgraph H ′ of H induced on these
vertices;

(2) Apply algorithm A to H ′;

(3) We return 1 if A(H ′) > 1
2δ

t
1m

1−ϵ, and otherwise 0;
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where 1 indicates that ω(G) ≥ δ1n and 0 indicates that ω(G) ≤ δ2n.

In order to analyse this algorithm we will need the following simple combinatorial observation.

Claim 4.14. Every clique in H is contained in a clique of the form St where S is an inclusion
maximal clique in G. In particular, ω(H) = ω(G)t.

Proof. Clearly if S is a clique in G then St is a clique inH, and hence ω(H) ≥ ω(G)t. Conversely,
let S′ be a clique in H, and let S ⊆ V (G) be the set of the vertices of G which appear as an
entry in some t-tuple in S′. Then clearly S must form a clique in G, and |S′| ≤ |S|t, and so also
ω(H) ≤ ω(G)t.

So, we need to show two things, for an appropriate choice of m = poly(n) and ϵ = Θ(1).

(a) If ω(G) ≥ δ1n, then with a large probability A(H ′) ≥ 1
2δ

t
1m

1−ϵ;

(b) If ω(G) ≤ δ2n, then with a large probability A(H ′) ≤ 2δt2m
1+ϵ ≤ δt1m

1−ϵ;

For the first claim, we assume that there is a clique K ⊆ G of size δ1n, and hence by Claim
4.14 there is a clique K ′ ⊆ H of size (δ1n)

t. The number of vertices of K ′ contained in H ′ is
binomially distributed with mean

m|V (K ′)|
|V (H)|

≥ δt1m.

However then, by the Chernoff bounds, the probability that H ′ contains less than 1
2δ

t
1m is at

most

exp

(
−δt1m

12

)
= on(1).

Hence, with high probability ω(H ′) ≥ 1
2δ

t
1m and so A(H ′) ≥ 1

2δ
t
1m

1−ϵ

For the second claim we need to show that it is very unlikely that the m vertices we sample
from H include a large clique. For the analysis of this it suffices to consider the inclusion-
maximal cliques in H, of which, by Claim 4.14, there are at most 2n. For any inclusion maximal
clique L in H, it has size at most (δ2n)

t by assumption and so again the number of vertices of
K contained in H ′ is stochastically dominated by a binomial random variable with mean

m|V (K)|
|V (H)|

≥ δt2m.

Then, again by the Chernoff bound, for any fixed K the probability that H ′ contains at least
2δt2m many vertices of K is at most

exp

(
−δt1m

3

)
,

and so by a union bound the probability that H ′ contains at least 2δt2m of any maximal clique
(which is the probability that H ′ contains a clique of size at least 2δt2m) is at most

2n exp

(
−δt1m

3

)
= on(1)
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as long as mδt2 = mnlog δ2 ≫ n. In this case, with high probability ω(H ′) ≥ 2δt2m and so
A(H ′) < 2δt2m

1+ϵ.

It remains to choose ϵ = Θ(1) and m = poly(t) such that mδt2 = mnlog δ2 ≫ n and 2δt2m
1+ϵ ≤

1
2δ

t
1m

1−ϵ. The first just requires thatm is a large enough power of n, for example m = n− log δ2+2.
For the second, after rearranging and taking logs, we see that it is sufficient that

2ϵ ≤ t

logm
log

δ1
4δ2

=
1

2− log δ2
log

δ1
4δ2

,

which is just a function of δ1 and δ2.

The deterministic reduction: Let us show then how we can use expander graphs to
derandomise the previous reduction. Again we are assuming the existence of a polynomial time
algorithm A, but now we will derive the existence of a deterministic alogorithm B′ to distinguish
between the two cases of Theorem 4.12.

The only difference between B′ and the B described in the preceding section if that B′ will use
derandomised sampling to construct the graph H ′. To do so, let us choose some (n, d, α)-graph
G′ on the same vertex set as G. In order to select the vertices in H ′, we no longer take a random
sample of t-tuples from V (G)t. Instead we consider the set of all t-tuples which represent a
length (t− 1) walk in the graph G′. This graph has m = ndt−1 vertices and, since d is fixed and
we again take t = Θ(log n), m is polynomial in n. The edge set of H ′ is formed as before, by
taking edges between t-tuples whose union is a clique in G.

We have already established that random walks on G′ should ‘approximate’ in some sense
random subsets of V (G). We need to give an analogue of this principle in the current setting as
well.

Claim 4.15. If ω(G) ≤ δ2n, then ω(H ′) ≤ (δ2 + 2α)tm.

Proof. As before, a clique in H ′ corresponds to a collection of (t − 1)-walks in G′ which are
confined to some fixed clique in G. If we perform a uniform random walk of length t − 1,
choosing a starting vertex uniformly at random, we are equally likely to achieve any vertex
in H ′ and hence, the size of the largest clique in H ′ is equal to m times the maximum over
all cliques S of G of the probability that such a walk is confined to S. Since by assumption
|S| ≤ δ2n, it follows from Theorem 4.8 that

ω(H ′)

m
= max

S a clique
P(A random walk contained in S) ≤ (δ2 + 2α)t.

The complementary statement that we need is then:

Claim 4.16. If ω(G) ≥ δ1n, then ω(H ′) ≥ (δ1 − 2α)tm.

Proof. Let S be a clique in G of cardinality |S| ≥ δ1n. Again by Theorem 4.8 a random walk
of length t − 1 in G is confined to S with probability at least (δ1 − 2α)t. The conclusion then
follows as before
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The rest of the proof follows in a similar manner as before, and we leave the details to the
exericise sheet.
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5 A geometric view of expander graphs

An attractive feature of expander graph is the multiple different viewpoints we can consider
them from. In the previous sections we saw how we can consider these objects combinatorially,
algebraically and probabilistically. In this section we add to this a geometric perspective.

5.1 Some background on isoperimetry

We will relate the expansion of a graph G to notions of isoperimetry. The basic idea of isoperime-
try is the idea of relating the boundary of a set to it’s volume. In any context where both volume
and boundary have a definition, the isoperimetric problem asks over all sets of the same (iso)
volume, which has the smallest boundary (perimeter)?

We will have all have seen the prototypical example of a such a question, which was considered
as early as ancient Greece.

Question 5.1. Of all simple closed curves in the plane enclosing a fixed area, which has the
shortest length?

The answer to this problem was known to the Greeks, that a circle is the unique minimiser,
but it took a very long time for this to be proved! The first rigorous proof was claimed by
Steiner, using an idea known as Steiner symmetrisation. Whilst a flaw was pointed out by
Weierstrass, several correct proofs were found soon after, some of which used Steiner’s ideas.
Analogous ideas have turned out to be very useful in the study of isoperimetric inequalities on
graphs. For this reason, and for histroical signigicance, we briefly describe the approach.

We first note that there is no loss of generality in restricting our attention to convex domains,
since the convex hull of a closed planar domain has larger area, but a smaller circumference.
Given a convex domain K we can symmetrise it as follows. We describe a symmetrisation
around the x-axis, but this can be perfomed with respect to any line through the origin.

K has some projection [x1, x2] onto the x-axis, and for each x ∈ [x1, x2] we consider the set
of points Kx of the form (x, y) : y ∈ P, which again must be some interval [y1, y2]. We translate
this set so that is is symmetric about the x-axis, i.e., K ′

x = [y1−y2
2 , y2−y1

2 ]. The symmetrised set
is that K =

⋃
x∈[x1,x2]

K ′
x. It can be shown that this transformation preserves the area of K,

and does not increase the circumference. In particular, the circumference of an optimal K (if
one should exists, which was the mistake pointed out by Weierstrass) must be invariant under
these operations. In fact, a little more work shows that K itself must be invariant under these
operations, and from there is can be shown that K is a disc.

Discrete versions of these symmetrisation arguments have been useful in various discrete
geometry problems, in particular the idea of compressions, which have been very useful in
studying certain types of hypergraphs, can maybe be though of as a generalisation of these
ideas.
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5.2 Graph isoperimetric problems

A simple, but quite important, observation is that a graph has some very natural notions of
boundary and volume. A natural measure of the volume of a set of vertices S is its cardinality
|S|. There are perhaps three main notions of boundary we might want to consider, the edge
boundary of a set S, ∂E(S) = {e : e ∩ S ̸= ∅ and e ∩ Sc ̸= ∅} and the inner and outer vertex
boundary of a set

∂i
V (S) = {v ∈ S : N(v) ∩ Sc ̸= ∅} and ∂o

V (S) = {v ∈ Sc : N(v) ∩ S ̸= ∅}.

For some reason, the inner boundary is rarely considered, and we will only ever refer to ∂V (S) =
∂o
V (S). For each of these notions of boundary we can define the isoperimetric parameter

ΦE(G, k) = min{∂E(S) : S ⊆ V, |S| = k} and ΦV (G, k) = min{∂V (S) : S ⊆ V, |S| = k}.

It is desirable to compeltely understand these parameters for natural families of graphs, or
to computationally determine or estimate these parameters for given G and k. In the broadest
generality these computational problems are very difficult (co-NP -hard), and much research
has been dedicated to finding efficient algorithms to approximate these quantities.

Let us illustrate these notions with an important family of graphs for which the isoperimetric
problems have been completely solved (using this notion of compressions), the hypercubes. The
d-dimensional cubes Qd is a graph on vertex set V (Qd) = {0, 1}d where two vertices are adjacent
if they differ in precisely one coordinate, i.e., if they have hamming distance one. The cube arises
very naturally in a whole host of combinatorial contexts. One particular reason for this is its
natural interpretation as the Hasse diagram of the subset relation on a d element set.

The isoperimetric problem has been solved in a very explicit manner in these graphs, not
only are the values of the functions ΦE(Q

d, k) and ΦV (Q
d, k) known for each k, the minimising

sets of vertices are well understood.

� For the edge isoperimetric problem the minimisers can be seen to be subcubes. We have
the inequality ΦE(Q

d, k) ≥ k(d − log k), and equality can be seen to hold when S is the
set of vertices of a subcube of Qd.

� For the vertex isoperimetric problem the minimisers can be seen to be Hamming balls, balls
of a fixed radius around the origin. Here we see that if k =

∑j
i=1

(
d
i

)
then ΦE(Q

d, k) =(
d

j+1

)
.

5.3 The discrete Laplacian

In classic vector analysis the Laplace operator ∆(f) = div(grad(f)) is a differential operator
which arises naturally in the differential equations describing many physical phenomena. In-
formally, it measures how well the value f(p) is approximated by the average of f over small
spheres centered at p.

We will define a discrete analogue which will turn out to be useful for several reasons. In order
to do so, it will make sense to first introduce discrete analogues of the gradient and divergence
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operates in graphs. The correct definition of the Laplacian will then be apparent. Suppose we
have an undirected graph G = (V,E) and we fix an arbitrary orientation of the edges (note: this
choice of orientation will not affect any of the definitions).

Let K be the V × E incidence matrix of G where the entry

Ku,e =


+1 if the edge e exits the vertex u

−1 if the edge e enters the vertex u

0 otherwise.

We can then define the gradient operator. Given any function f : V → R, which we view as a
row vector in RV , the gradient operator maps f to fK, a vector indexed by E. The gradient
measures the change of f along the edges of the graph, so that if e = uv then (fK)e = fu − fv.

The divergence operator takes a function g : E → R on the edge set of G, now viewed as a
column vector in RE , and maps it to Kg, a vector indexed by V . If we think of g as describing
a flow, then its divergence at a vertex is the net outbound flow, namely,

(Kg)v =
∑

e exits v

ge −
∑

e enters v

ge.

We can then define the Laplacian, which maintaining the analogy should map a function
f : V → R to fKKTfT . The matrix L = LG = KKT is accordingly called the (discrete)
Laplacian of G. This matrix is also sometimes known as the Tutte matrix of G in the graph
theory literature and appears in various contexts there, such as the matrix-tree Theorem adna
randomised matching algorithms.

A simple calculation shows that L is a symmetric matrix with rows and columns indexed by
V where

Lu,v =

{
−1 if (u, v) ∈ E

deg(u) if u = v.

Indeed, Lu,v =
∑

eKu,eKv,e and so if u ̸= v then the summand is non-zero iff e = (u, v), where
it takes the value −1. Conversely, if u = v then the summand is one for each e which is incident
to u = v.

From this it is easy to deduce the following equality, which will be useful later.

fLfT =
∑
u

(fL)ufu

=
∑
u

deg(u)f2
u +

∑
u

∑
(u,v)∈E

−fvfu

=
∑

(u,v)∈E

f2
u + f2

v − 2fufv

=
∑

(u,v)∈E

(fu − fv)
2. (5.1)

In particular we have the following consequence.
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Proposition 5.2. For every graph G the matrix Lg is positive semi-definite. Its smallest eigen-
value is 0, and the corresponding eigenfunction is u.

In fact, we can say much more about the spectrum of L. Though it is possible to develop
some of this theory for irregular graphs, the regular case is simpler to state an analyse.

Lemma 5.3. The Laplacian LG of a d-regular graph G satisfies:

� L = LG = dI −A(G);

� The spectrum of L is in [0, 2d].

� The smallest eigenvalue of L is zero.

� The spectral gap of G is equal to the smallest positive eigenvalue of L.

5.4 The Cheeger constant and inequality

Many of the things we do here for graphs have been studied previously in the framework of
Riemannian manifolds. It won’t be important for us, but these are spaces that look locally like
Rn and carry a differentiable structure with a smoothly varying notion of inner product among
tangent vectors. This allows us to carry out many familiar operations from calculus, compute
volumes and distances. The following notion is then an idea of expansion that arose in the study
of these spaces.

Definition. The Cheeger constant of a compact n-dimensional Riemannian manifold M is

h(M) = inf
A

µn−1(∂A)

min{µn(A), µn(M \A)}
,

where this infimum is taken over open subsets of M , ∂A is the boundary of A and µi is the ith
dimensional measure.

The analogy with edge expansion should hopefully be obvious: We partition M into two
parts A and its complement M \A, and consider the ratio between two quantites

� The ((n− 1)-dimensional) measure of the boundary of A; and

� The minimum of the (n-dimensional) measures of A and its complement.

(of course, as in the definition of h(G), we could alternatively take the minimum over open sets
of ‘volume’ at most 1

2 of the whole space).

As discussed above, it is possible to develop much of the theory of differential calculus over
Riemannian manifolds. In particular, associated with any Riemannian manifold M there is a
linear differential operator known as the Laplacian, which is defined on real functions f : M → R
in the familiar way ∆(f) = div(grad(f)). If ∆f = λf we say that f is an eigenfunction of the
Laplacian with eigenvalue λ. It can be shown that also in this setting the eigenvalues of λ
are all non-negative, and that its smallest eigenvalue is zero, corresponding to the constant
eigenfunction. A fundamental theme in this area is then the connection between expansion (in
the form of the Cheeger constant h) and the spectrum of this operator.
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Theorem 5.4 (Cheeger). Let M be a compact Riemannian manifold, and let λ be the smallest

positive eigenvalue of its Laplacian. Then λ ≥ h2

4 .

5.5 Expansion and the spectral gap

Note the (not coincidental) similarities between the previous inequality and the upper bound of
Theorem 3.1. Recall that the expansion ratio of a graph G is defined as

h(G) = min
S : |S|≤n

2

|∂S|
|S|

.

Theorem 5.5 (Dodziuk/ Alon and Milman / Alon). Let G be a d-regular graph with spectrum
λ1 ≥ λ2 ≥ . . . ≥ λn. Then

d− λ2

2
≤ h(G) ≤

√
2d(d− λ2)

Before we, finally, give a proof of this theorem, let us say a few words about it’s optimality,
and related concepts.

Firstly we note that both upper and lower bounds are tight.

1. For the lower bound recall our discussion of the isoperimetric inequality on the hypercube
Qd. Taking S to be the (d− 1)-dimensional subcube we see that h(G) ≤ 1 and conversely,

h(G) = min
S : |S|≤n

2

|∂S|
|S|

≥ min
S : |S|≤n

2

|S|(d− log |S|)
|S|

≥ min
S : |S|≤n

2

(d− log |S|) = 1.

On on the other hand it is reasonably easy to show that Qd has eigenvalues d, d − 2, d −
4, . . . ,−d (with varying multiplicites), and so the spectral gap is d− λ2 = 2.

2. For the upper bound we consider an n-vertex cycle Cn. The edge expansion ratio can be
seen to be Θ

(
1
n

)
, attained with S being half the cycle. On the other hand the adjacency

matrix of Cn is a circulant matrix, whose eigenvalues can be easily shown to be ωj+ωn−1
j =

2 cos
(
2πj
n

)
, where ωj = e

2πij
n for j = 0, . . . , n− 1. In particular,

λ2 = 2 cos

(
2π

n

)
= 2−Θ

(
1

n2

)
and so 2− λ2 = Θ

(
1
n2

)
.

We also note one particularly important generalisation of this theorem, to general reversible
Markov chains. For such chains we can defined a weighted analogue of edge-expansion, called
conductance, and give similar bounds on this in terms of the spectral gap of the adjacency matrix
of the chain. This was done by Jerrum and Sinclair, and had a big impact on the analysis of
the convergence of Monto-Carlo algorithms.

Proof of Theorem 5.5. The easy direction is the lower bound, whose proof is similar to the proof
of the Expander mixing lemma, where we now leverage the fact that the two sets we consider
are complementary.
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Recall that the first eigenvector of a regular graph is u, and so to bound the second eigenvalue
from below, it suffices to exhibit a vector f ⊥ u which ‘scales’ by a large factor. More precisely
we will find such a vector f whose Rayleigh quotient is large

fAfT

||f ||22
≥ d− 2h(G),

from which it follows that λ2 ≥ d− 2h(G).

The vector f we will consider comes from an optimal set S for edge expansion, i.e., h(G) =
e(S,Sc)

|S| and |S| ≤ n
2 . We take then f = |Sc|1S−|S|1Sc , where as before 1X ∈ RV is the indicator

function of a subset X ⊆ V . Note that, indeed, f ⊥ u.

It is simple to express the Rayleigh quotient in terms of graph parametes:

||f ||22 = |Sc|2|S|+ |S|2|Sc| = |S||Sc|(|S|+ |Sc|) = n|S||Sc|,

fAfT =
∑
u

(fA)ufu =
∑
u

fu
∑
v

fvAu,v =
∑

(u,v)∈E

2fufv

= 2
(
e(S)|Sc|2 + e(Sc)|S|2 − |S||Sc|e(S, Sc)

)
.

Now, since G is d-regular, we can substitute 2e(S) = d|S| − e(S, Sc) and 2e(Sc) = d|Sc| −
e(S, Sc), to see that

fAfT = (d|S| − e(S, Sc)) |Sc|2 + (d|Sc| − e(S, Sc)) |S|2 − 2|S||Sc|e(S, Sc)

= d|S||Sc|2 + d|Sc||S|2 − e(S, Sc)
(
|Sc|2 + |S|2 − 2|S||Sc|

)
= nd|S||Sc| − n2e(S, Sc).

from which it follows that

λ2 ≥
fAfT

||f ||22
=

nd|S||Sc| − n2e(S, Sc)

n|S||Sc|
= d− ne(S, Sc)

|S||Sc|
≥ d− 2h(G),

using that h(G) = e(S,Sc)
|S| and |Sc| ≥ n

2 by assumption.

So, let us move on to the difficult direction, the upper bound, that high expansion implies
a large spectral gap. The key idea here is to consider the eigenvector v = v2 associated with
λ2. It turns out that the weighting v ∈ RV will be close in some way to an edge cut with few
crossing edges. Indeed, if v ∈ {−1, 1}V then it would be relatively clear which cut to consider,
however in general we can split the vertices according to some threshold value, and a natural
one to consider would be 0.

So, let us consider w = v+, the vector defined by wx = max{vx, 0} and V + = supp(w) =
{x : wx > 0}. Without loss of generality we may assume that |V +| ≥ n

2 , since otherwise we can
consider −v, which is also an eigenvector with eigenvalue λ2. We now aim to prove two bounds
on the Rayleigh quotient of w, but a trick here will be to consider, rather than the adjacency
matrix A, the Laplacian L:

(i) wLwT

||w||22
≤ d− λ2;
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(ii) h(G)2

2d ≤ wLwT

||w||22
.

from which it clearly follows that h ≤
√

2d(d− λ2) as claimed.

We start by proving (i). We first note that, since v is an eigenvector of L with eigenvalue
d− λ2, for any x ∈ V + we can write

(wL)x =
(
w(dI −A)

)
x
= dwx −

∑
y∈V

Axywy = dvx −
∑
y∈V +

Axyvy

≤ dvx −
∑
y∈V

Axyvy = (Lv)x = (d− λ2)vx.

Then, since wx = 0 for all w ̸∈ V + we see that

wLwT =
∑
x∈V

(wL)xwx =
∑
x∈V +

(wL)xwx ≤
∑
x∈V +

(d− λ2)v
2
x = (d− λ2)

∑
x∈V

w2
x = (d− λ2)||w||22.

So, it remains to prove (ii). To this end, let us define an orientation on E(G) given by orienting
each edge xy as (x, y) if wx ≥ wy (breaking ties arbitrarily). We will use this orientation, as in
the previous section, to define the V × E incidence matrix K of G.

Let us consider the following quantity

Bw :=
∑

(x,y)∈E

|w2
x − w2

y| =
∑

(x,y)∈E

w2
x − w2

y,

where the sum is taken over the oriented edges (x, y) of E. We will show that

h(G)||w||22 ≤ Bw ≤
√
2d||wK||2||w||2, (5.2)

from which (ii) follows since ||wK||22 = ⟨wK,wK⟩ = wKKTwT = wLwT . Note that the first
inequality somehow relates w to the optimal cut in G.

Let us first prove the upper bound in (5.2). Using the Cauchy-Schwartz inequality we see
that

Bw =
∑

(x,y)∈E

w2
x − w2

y =
∑

(x,y)∈E

(wx + wy)(wx − wy) ≤
√ ∑

(x,y)∈E

(wx + wy)2
√ ∑

(x,y)∈E

(wx − wy)2.

However the second factor can be evaluated as√ ∑
(x,y)∈E

(wx − wy)2 =

√∑
e∈E

(wK)2e = ||wK||2

and the first factor can be bounded as√ ∑
(x,y)∈E

(wx + wy)2 ≤
√ ∑

(x,y)∈E

2w2
x + 2w2

y =

√
2d
∑
x∈V

w2
x =

√
2d||w||2

where we used that 2x2 + 2y2 − (x+ y)2 = x2 − 2xy + y2 = (x− y)2 ≥ 0 for all x, y. It follows
that Bw ≤

√
2d||wK||2||w||2.
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Let us then prove the lower bound in (5.2). For ease of notation we relabel V (G) = [n] so
that w1 ≥ w2 ≥ . . . ≥ wn, in particular so that each edge ij with i < j is oriented as (i, j). Our
plan will be to rewrite Bw in terms of the coordinates of w and the sizes of the cuts E([i], [i]c)
for i ∈ V +. Bounding the sizes of these cuts by the expansion ratio (which is possible since
|V +| ≤ n

2 )) will lead to the claimed bound.

Bw =
∑

(x,y)∈E

w2
x − w2

y =
∑

(x,y)∈E,x<y

y−1∑
i=x

w2
i − w2

i+1

=
n∑

i=1

(w2
i − w2

i+1)e([i], [i]
c) =

∑
i∈V +

(w2
i − w2

i+1)e([i], [i]
c)

≥
∑
i∈V +

(w2
i − w2

i+1)hi = h
∑
i∈V +

w2
i = h||w||22.

The second last equality above is obtained by collapsing a telescoping sum and noting that
wi+1 = 0 if i = |V +|.

5.6 Typical vertex-expansion

In this section we’ll investigate the vertex expansion of small linear sets in a ‘typical’ (n, d, α)-
graph. It will be convenient to consider the following, normalised, isoperimetric parameter

Ψ(G, k) = min
j≤k

ΦV (G, j)

j
= min

S⊆V,|S|≤k

|∂V (S)|
|S|

.

As a little toy example/warm up let us consider the same problem in the bipartite setting,
and the slightly simpler parameter

ΨL(G, k) = min
S⊆L,|S|≤k

|∂V (S)|
|S|

,

determining expansion of sets on the ‘left side’ of a bipartite graph. Note that, in the introduction
we showed that existence of graphs where ΨL(G, n

10d) ≥
5d
8 . An obvious limit to the expansion of

these small sets would be d, although in fact we can say a little more. Indeed, if S ⊆ L is L∩K
for some connected set of vertices in G then it is easy to see that |∂V (S)| ≤ sd+ (s− 1)(d− 1),
leading to the ΨL(G, s) ≤ d− 1 + 1

s .

Theorem 5.6. For every δ > 0 there exists an ϵ > 0 such that almost every d-regular bipartite
graph G with n vertices in each partition class

ΨL(G, ϵn) ≥ d− 1− δ.

We note that a similar lower bound also then holds for the corresponding edge-isoperimetric
parameter.

We also note that it is a non-trivial question how we sample uniformly such a graph. In the
bipartite case it is significantly easier, and this will motivate our techniques for the non-bipartite
case. Later in the course we will also discuss a different way to sample (n, d)-graphs.
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We will do so using the so-called configuration model. In the bipartite case, we start with
two vertex sets L and R of size n and for each x ∈ L and y ∈ R we take a collection Bx and
By consisting of d half-edges. We choose a matching M , uniformly at random from all possible
matchings, of the points in

⋃
x∈LBx and

⋃
y∈R By, and we build a graph G = G(M) on L and R

where the number of edges from x to y is the number of half-edges in Bx matched to a half-edge
in By in the matching M .

However, in some way we’ve just reduced the problem of sampling such graphs to the problem
of sampling uniformly a matching M from a complete bipartite graph Kdn,dn. But, it turns out
that this is much easier to do so and, whilst, unlike in the simpler binomial random graph
model, the existence of edges are not independent from each other, it’s relatively easy to get a
handle on the probability that this matching contains certain substructures using simple counting
techniques (as we’ll see later).

One useful observation, which we will apply later in the more general configuration model
as well, is that we can generate the matching ‘sequentially’: given any ordering e1, e2, . . . of the
half-edges in

⋃
x∈X Bx we can first choose the neighbour f1 of e1 uniformly at random from⋃

x∈Y By, then choose the neighbour f2 of e2 uniformly at random from
⋃

x∈Y By \ {f1}, and
so on. Not only does this process also give a uniform distribution on the matching obtained,
but if we stop at any point in the process, the remaining edges of the matching are uniformly
distributed over all possible matchings of the remaining half-edges. We call this, or many similar
observations like this, the principle of deferred decisions.

However, there is a slight technical difficulty with this model, even though M is uniformly
distributed it isn’t true that G(M) is uniformly distributed (the probability of obtaining a
graph depends on the number of paralell edges). These issues are normally easy to deal with in
practise: for example for fixed d it can be shown that with positive probability G(M) is simple,
and conditioned on G(M) being simple it is uniformly distributed over all d-regular bipartite
graphs, and hence any event which holds whp in the configuration model also holds whp for
a uniformly chosen simple d-regular bipartite graph. We will mostly ignore such issues in our
presentation.

Proof of Theorem 5.6. We generate a random d-regular bipartite graph G according to the bi-
partite configuration model described above. Let us write η = d − 1 − δ for the expansion
ratio which we wish to prove. For sets S ⊆ L and T ⊆ R, let us write XS,T for the indica-
tor random variable of the event that Γ(S) ⊆ T . Hence, we aim to show that whp XS,T = 0
for all s = |S| ≤ ϵn and |T | = ηs (ignoring floor signs here for notational convenience). We
note first that it suffices to prove this statment for sets S ⊆ L, since it will also hold for sets
S ⊆ R by symmetry and then if we have an arbitrary set S ⊂ V (G) then S1 = S ∩ L ⊆ L
And S2 = S ∩ R ⊆ R have disjoint neighbourhoods. Note furter that is suffices to prove it for
|T | = ηs since if Γ(S) ⊆ T ′ with |T ′| > ηs we can just choose some arbitrary T ⊇ T ′ of size
|T | = ηs, for which then XS,T = 1.

However, for fixed S and T , using our sequential method of exposing the edges in G, we
can calculate the probability that Γ(S) ⊆ T by exposing first the half-edges emanating from
vertices in S. Indeed, there are ds many such edges, and they all must be matched to a set of
td half-edges, and hence

P(XS,T = 1) =
td

nd

td− 1

nd− 1
. . .

td− sd

nd− sd
=

(td)sd(nd− sd)!

(nd)!
≤
(
td

nd

)sd
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where (n)k = n(n− 1) . . . (n− k + 1) is the falling factorial. It follows that

P(Ψ(G, ϵn) < η) = 2P

∑
S,T

XS,T > 0

 ≤ 2
ϵn∑
s=1

(
n

s

)(
n

t

)
(td)sd(nd− sd)!

(nd)!
.

Then, as usual, we’re left to approximate this sum. Using our trusty inequality
(
n
k

)
≤
(
en
k

)k
P(Ψ(G, ϵn) < η) ≤ ≤ 2

ϵn∑
s=1

(en
s

)s(en

ηs

)ηs (ηs
n

)sd
≤ 2

ϵn∑
s=1

(
en

s

(
en

ηs

)η (ηs
n

)d)s

= 2
ϵn∑
s=1

(
c(δ, d)

( s
n

)δ)s

,

where c(δ, d) is some constant which only depends on δ and d. Given a δ > 0, it is easy to pick
an ϵ such that ( s

n

)δ
≤ ϵδ <

1

10

and so the tail of this series is shrinking like a geometric series (and hence is o(1). However, for
small s (say s ≤ log n) the sum

logn∑
s=1

(
c(δ, d)

( s
n

)δ)s

≤ log n
c(δ, d) log n

n
= o(1).

With a bit more work we can prove a similar bound for arbitrary (n, d)-graphs. Now, as
you might expect, our configuration model consists of choosing a set Bx of d half-edges for each
vertex x ∈ V , choosing uniformly at random a matching M on the set

⋃
x∈V Bx and taking the

graph G = G(M) where the number of edges from x to y is the number of half-edges in Bx

matched to half-edges in By (and the number of loops at x is the number of matching edges
fully contained in Bx).

Note that as before, we can also expose this matching sequentially according to some ordering
e1, e2, . . . of the half-edges in

⋃
x∈V Bx. However, now we need to make the obvious concession

that if at each stage we only choose a partner for a half-edge ej if it has not already been paired
to an earlier half-edge ei in the process. Again, it is easy to see that the matching generated in
this way is uniformly distributed, and that if we stop at any point in the process the remaining
edges of the matching are uniformly distributed over all matchings of the remaining half-edges.

Again, there are some echnical difficulties arising from the fact that the distrbituion of G(M)
is not uniform (the probability of obtaining a graph depends on the number of loops and parallel
edges), but they can be dealt with in a similar fashion.

Theorem 5.7. For every δ > 0 there exists an ϵ > 0 such that almost every (n, d)-graph G

Ψ(G, ϵn) ≥ d− 2− δ.

Similarly we can see that this bound is optimal by considering any connected set with s
vertices, which shows that Ψ(G, s) ≤ d− 2 + 4

s .
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Proof of Theorem 5.7. The first, and easier part of the proof will be to demonstrate that whp
G has good edge expansion. Namely, using the expression ∂E(S) = d|S| − 2e(S), which holds
for any d-regular graph, we see that it is sufficient to bound

e(S) ≤ (1 +
δ

2
)|S| for all |S| ≤ ϵn, (5.3)

from which it will follow that ∂E(S) ≥ (d− 2− δ)|S| for all such S. We will then show that

|∂V (S)|+ e(S) ≥ (d− 1− δ

2
)|S| for all |S| ≤ ϵn, (5.4)

from which it will follow that Ψ(G, ϵn) = minS⊆V,|S|≤ϵn
|∂V (S)|

|S| ≥ (d− 2− δ).

So, let us begin by proving (5.3). As before, let us define random variables YS,K for each set
|S| ≤ ϵn and K is a set of half-edges emanating from vertices in S of size k. Then YS,K = 1
if and only if all the matching M induces a matching on K (i.e, the half-edges in K are all
matched amongst themselves). Note that, if |E(S)| ≥ k, then YS,K = 1 for some set K of size k.

However, we can reasonably easily evaluate P(YS,K). Indeed, the first step is to note that
the number of perfect matchings on a set of size ℓ can be expressed as ℓ!! := (ℓ− 1)(ℓ− 3) . . . 1.
It follows that

P(YS,K) =
M(k)M(dn− k)

M(dn)
=

k!!(dn− k)!!

dn!!
=

k − 1

nd− 1

k − 3

nd− 3
. . .

1

nd− k − 1
≤
(

k

nd

) k
2

,

and so the probability that there is some subset S which doesn’t satisfy (5.3) is at most

P

∑
S,K

YS,K > 0

 ≤
ϵn∑
s=1

sd∑
k=2(1+ δ

2
)s

(
n

s

)(
ds

k

)
k!!(dn− k)!!

dn!!

≤
ϵn∑
s=1

sd∑
k=2(1+ δ

2
)s

(en
s

)s(eds

k

)k ( k

nd

) k
2

≤
ϵn∑
s=1

sd∑
k=2(1+ δ

2
)s

(en
s

)s( ed

2(1 + δ
2)

)sd ( s
n

) k
2

≤
ϵn∑
s=1

sd∑
k=2(1+ δ

2
)s

c(δ, d)s
( s
n

) k
2
−s

≤
ϵn∑
s=1

sd

(
c(δ, d)

( s
n

) δ
2

)s

= o(1),

as long as ϵ is sufficiently small, say so that c(δ, d)ϵ
δ
2 < 1

2 . Again we have to deal with the terms
for small s separately, but it can easily be seen that the sum over say s ≤ log n is o(1). Hence
(5.3) holds whp as claimed.

The proof of (5.4) follows along similar lines, but involves a more careful calculation. Let
us define random variables ZS,R,K for every pair of disjoint vertex sets S and R of size s and
r, respectively and subsets K of cardinality k of the ds half-edges emanating from vertices of

49



S. The ZS,R,K is the indicator function of the event that M induces a matching on K, and
the other ds − k half-edges emanating from S are matched with half-edges emanating from R.
Hence we are interested in whether ZS,R,K = 1 for some triple (S,R,K) with 0 < s ≤ ϵn and
r + k

2 =
(
d− 1− δ

2

)
s = ηs.

As before, given (S,R,K), we can calculate this probability explicitly

P(ZS,R,K = 1) =
k!!(rd)sd−k(nd− 2sd+ k)!!

(nd)!!

=
k!!rd(rd− 1)(rd− 2) . . . (rd− sd+ k + 1)

(nd− 1)(nd− 3) . . . (nd− 2sd+ k + 1)

≤
(

ds

n− 2s

)sd− k
2

,

where we used that each of the ds − k
2 factors in the numerator are at most max{k, rd} ≤ d2s

and each of the ds− k
2 factors in the denominator are at least nd− 2sd. Hence we can bound

P
(∑

ZS,R,K

)
≤

ϵn∑
s=1

∑
r+ k

2
=ηs

(
n

s

)(
n− s

r

)(
ds

k

)
k!!(rd)sd−k(nd− 2sd+ k)!!

(nd)!!

≤
ϵn∑
s=1

∑
r+ k

2
=ηs

(en
s

)s (en
r

)r (eds

k

)k ( ds

n− 2s

)sd− k
2

≤
ϵn∑
s=1

∑
r+ k

2
=ηs

(en
s

)s (en
s

)r (s
r

)r ( s
k

)k
(ed)k

(
ds

n− 2s

)sd− k
2

.

Now, since
(
s
r

) r
s and

(
s
k

) k
s are both bounded above by a constant, and n − 2s ≥ n

2 we can
simplify this

P
(∑

ZS,R,K

)
≤

ϵn∑
s=1

∑
r+ k

2
=ηs

c(d, δ)s
( s
n

)sd−s−r− k
2

≤
ϵn∑
s=1

sd

(
c(d, δ)

( s
n

) δ
2

)s

= o(1),

again for ϵ > 0 sufficiently small in terms of d and δ.
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6 Extremal problems on spectrum and expansion

In this section we will consider various extremal problems to do with the expansion and spectrum
of graphs. In particular we are interested in which (n, d)-graphs maximise the edge- and vertex-
expansion ratios (and more generally for these ratios restricted to sets of a fixed size), which
(n, d)-graphs maximise the spectral gap, and how large these parameters are on these maximisers.

A useful example to keep in mind here will be the infinite d-regular tree Td. It will turn out
that this is in some sense the ‘best’ example for both these problems, and not only will this give
us a good indication of what sort of bounds to prove in the general case, it will also help inform
our proofs.

6.1 The d-regular tree

6.1.1 The expansion of Td

Consider the edge-expansion function ΦE(Td, k). Any minimising set S is clearly connected, and
hence a subtree, and so e(S) = |S| − 1 and hence

ΦE(Td, k) = kd− (2k − 1) = k(d− 2) + 2

and hence the expansion ratio satisfies

h(Td) = inf
|S| finite

e(S, Sc)

|S|
= d− 2.

Note that the above argument also implies that ΦE(G, k) ≤ k(d−2)+2 for every (n, d)-graph
and every k and so the relative expansion of a set of size k cannot exceed d− 2 + 2

k . However,
for finite G the expansion ratio must in fact be significantly smaller than this. To see this,
consider a random subset S ⊆ V (G) of size n

2 . The expected size of ∂E(S) is
(1+o(1))d|S|

2 , since
each edge of G belongs to ∂E(S) with probability 1

2 + o(1). Hence there exists some set S of

size n
2 with ∂E(S)

|S| ≤ d
2 + o(1), and so h(G) ≤ d

2 + o(1). In fact, a more refined analysis will show

that h(G) ≤ d
2 − c

√
d for some absolute constant c for any (n, d)-graph G with d ≥ 3 and n

sufficiently large. As we will see later, there are (n, d, α)-graphs with α = O
(

1√
d

)
, and so this

result is tight up to the value of c (which follows from the Cheeger bound).

6.1.2 The spectrum of Td

More interesting is the spectrum of Td. Here we will have to treat the (infinite) adjacency
matrix A(Td) of Td as a linear operator on ℓ2(V (Td)), the set of square summable real functions
on V (Td), and look at the spectrum of this operator.

For such operators it is normal to define the spectrum as spec(A) = {λ : (A−λI) is not invertible}.
This means that λ can be in spectrum for two reason - either (A− λI) has a non-trivial kernel,
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or it is not onto. For finite matrices these two conditions are equivalent, and we can deter-
mine whether λ is in the spectrum by looking for an eigenvector with eigenvalue λ. In contrast
(A − λI) has no eigenvectors, and it’s entire spectrum comes from the second reason. In this
context there is also an analogue of the distribution and multiplicity of the eigenvalues, coming
from the spectral measure, which we will mention briefly later.

Theorem 6.1 (Carter). The spectrum of A := A(Td) is given by

spec(A) = [−2
√
d− 1, 2

√
d− 1].

Sketch of proof. We follow the approach of Friedman. We fix some arbitrary vertex v as the
root of the tree. Then it turns out that

λ ∈ spec(A) ⇐⇒ δ(v) ̸∈ Range(A− λI),

where δ(v) is the characteristic function of {v}. The necessity of this condition is clear. The
sufficiency is not hard to show, but we will not prove it. So, we wish to work out when there
exists some function f ∈ ℓ2(V ) satisfying

δ(v) = (A− λI)f . (6.1)

We say that a function f on V is spherical around v ∈ V if fu depends only on the distance
(in the graph metric) from u to v. The spherical symmetrisation of g ∈ ℓ2(V ) around v is a
spherical function f such that ∑

d(u,v)=r

fu =
∑

d(u,v)=r

gu

for every r ≥ 0. It is easy to see that if g ∈ ℓ2(V ) is a solution to (6.1), then f is in ℓ2(V ) as
well and also satisfies (6.1).

Hence we may assume wlog that f is spherical, and hence determined by some sequence
x0, x1, . . . such that f(u) = xi whenever d(u, v) = i. This reduces (6.1) to the following recur-
rence relation

λx0 = dx1 + 1 and λxi = xi−1 + (d− 1)xi+1 for i ≥ 1. (6.2)

The general solution to such a recurrence is given by xi = αρi1 + βρi2 where

ρ1,2 =
λ∓

√
λ2 − 4(d− 1)

2(d− 1)

are the roots of the quadratic equation λρ = 1 + (d− 1)ρ2.

Then, if the discriminant is negative, i.e., if |λ| ≤ 2
√
d− 1, then the roots are complex with

absolute value √
λ2 + 4(d− 1)− λ2

4(d− 1)2
=

1√
d− 1

.

However, in this case f ̸∈ ℓ2. Indeed, |xi| = Θ
(
(d− 1)−

i
2

)
and then, since there are Θ

(
(d− 1)i

)
vertices at distance i from v, it follows that ||f ||2 = ∞. Hence, no such function f ∈ ℓ2 exists,
and so λ ∈ spec(A). A similar observation holds for λ = 2

√
d− 1.
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Conversely, we claim that when |λ| > 2
√
d− 1 then (6.2) has a solution in ℓ2, implying that

λ is not in the spectrum of A. To see this, we observe that

2(d− 1)
d

dλ
ρ1 = 1− λ√

λ2 − 4(d− 1)
< 0

for |λ| > 2
√
d− 1, and so

ρ1 ≥
2
√
d− 1−

√
4(d− 1)− 4(d− 1)

2(d− 1)
=

1√
d− 1

.

So if we take xi = αρi1 for some any α then (6.2) holds for all i ≥ 1, and f ∈ ℓ2. It remains to
choose α such that the first condition also holds, which says

λα = dαρ1 + 1,

which has a solution iff λ ̸= dρ1. However, |ρ1| < |λ|
2(d−1) ≤

|λ|
d for all d ≥ 2.

6.2 The Alon-Boppana lower bound

In this section we return to the question of how small λ2 can be in a (large) d-regular graph.
In Lemma 3.5 we gave a weak bound of (1 − o(1))

√
d, and now we will prove the stronger

Alon-Boppana lower bound.

Theorem 6.2 (Alon-Boppana, Nilli, Friedman). There exists a constant c such that every
(n, d)-graph G with diameter ∆ satisfies

λ2(G) ≥ 2
√
d− 1

(
1− c

∆2

)
.

Note that, for fixed d and n large, the diameter of G must be growing as a function of n. More
explicitly, since the diameter of an (n, d)-graph is Ω(logd−1 n) we obtain the following corollary.

Corollary 6.3. For every (n, d)-graph G

λ2(G) ≥ 2
√
d− 1

(
1−O

(
1

log2 n

))
.

We will present two different proofs of this theorem. The first is again via the probabilistic
method, and in particular the first moment method, but will lead to a slightly weaker conclusion:
only bounding λ(G) rather than λ2 and with a slightly weaker error term.

Proof I : Counting walks in Td. Let A be the adjacency matrix of G. Clearly λ (A)2k = λ
(
A2k

)
for every integer k, where λ(A) = maxi≥2 |λi|. We will give a lower bound on λ

(
A2k

)
by

estimating the Rayleigh quotient of a judiciously chosen vector f = δ(s) − δ(t), where s and t
are two vertices at distance ∆ in G. That is, fs = −ft = 1 and fu = 0 for all other u. Note that
f ⊥ u, and hence

λ2k ≥ fA2kfT

||f ||22
=

(
A2k

)
ss
+
(
A2k

)
tt
− 2

(
A2k

)
st

2
.
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However, if we choose k = ∆−1
2 , so that there are no paths of length 2k from s to t, then the

negative term in the numerator vanishes. Now, the positive terms in the numerator are counting
the number of closed walks of length 2k which start and end at s or t, respectively.

However, we note that these must be at least the number of closed walks of length 2k which
start and end at the root v of Td. Indeed, it is easy to display a natural injection from walks in
Td rooted at v to walks in G rooted at a fixed vertex x. It follows that

λ ≥ (t2k)
1
2k ,

where t2k counts the number of closed walks of length 2k starting and ending at the root in Td.

However the numbers t2k have been studied in great detail. In fact, very good estimates, as
well as a recursive definition and their generating functions are known. However all we will need
is a very rough estimate (we will give a slightly more precise one later in the course). We can
associate with each walk in Td a sign pattern, a sequence in {+1,−1}2k where a step away from
the root gives a +1 and a step towards the root gives a −1.

Clearly the sign pattern associated to the walk must satisfy the following two properties:

� It sums up to zero;

� Each partial sum is non-negative.

We call such a sign pattern admissable.

It is well known that the number of admissable sign pattterns of length 2k is given by the
kth Catalan number

Ck =

(
2k
k

)
k + 1

.

A simple way to see this is to associate every sign pattern with amontonic path in the grid, each
+1 corresponding to a step to the right and each −1 to a vertical step. The path corresponding
to an admissable sign pattern must end at (k, k) and never go strictly above the main diagonal
{(x, x) : x ≤ k}.

Now, there are
(
2k
k

)
possible sign patterns of length k, and for every inadmissable sign pattern

γ we can define a reflected sign pattern of length k γ′ by flipping the pattern after the first point it
goes strictly above the main diagonal. Clearly the walk corresponding to γ′ ends at (k−1, k+1).
Furthermore, each walk starting at (0, 0) and ending at (k− 1, k+1) must go strictly above the
main diagonal, and this reflection process is reversible. Hence the number of inadmissable paths
is equal to the number of monotonic paths ending at (k − 1, k + 1), which is equal to

(
2k
k−1

)
. It

follows that the number of admissable paths in equal to(
2k

k

)
−
(

2k

k − 1

)
=

(
1− k

k + 1

)(
2k

k

)
=

1

k + 1

(
2k

k

)
.

Now, given an admissable sign pattern we claim there are at least (d−1)k different walks with
this sign pattern, since for each of the k occurences of +1 we can choose the next step ‘away’
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from the root. It follows, using the consequence of Stirling’s approximation that
(
2k
k

)
≈ 22k√

πk
,

that

t2k ≥ Ck(d− 1)k = Θ

((
2
√
d− 1

)2k
k−

3
2

)
and so, recalling that k = ∆−1

2

λ ≥ 2
√
d− 1

(
∆− 1

2

)− 6
4(∆−1)

= 2
√
d− 1

(
1−O

(
log∆

∆

))
,

using the fact that

x
− 1

y = e
− log x

y = 1−O

(
log x

y

)
,

as long as x ≪ ey.

We can however improve this proof by making a more judicious choice for the function f ,
which will come from a truncated eigenfunction of Td.

Proof II: Using spherical functions. We follow here an argument of Friedman. Again our hope
is to bound λ2 in terms of the Rayleigh quotient, observing that

λ2 = min
f⊥u

fAfT

||f ||22
,

using a clever choice of a test function f . The idea is to try to use something close to an
eigenfunction for a truncation of Td.

Given two vertices s and t at distance ∆, we will construct a function f which is positive on
vertices at distance ≤ k = ∆

2 − 1 from s, negative on vertices at distance ≤ k from t and zero
elsewhere, where the values which f takes are derived from the eigenfunction g with maximal
eigenvalue for the d-regular tree of height k.

Let Si = {v : d(s, v) = i} and Ti = {v : d(t, v) = i}, noting that these sets are all disjoint,
and let Q = V (G) \

⋃
0≤i≤k(Si ∪ Ti) be the rest of the vertices of G. Note further that there

are no edges between any Si and Tj . Let us write Td,k for the d-regular tree of height k and let
A(Td,k) be its adjacency matrix. We use the following claim

Claim 6.4. Let µ be the largest eigenvalue of A(Td,k). Then there is a unique eigenvector g
with eigenvalue µ and g is non-negative and spherically symmetric.

This can be proved directly, or by appealing to the Perron-Frobenius theorem, and non-
negativity and spherical symmetry can be verified as in Theorem 6.1. Let gi be the value that g
takes on the vertices on the ith level of Td,k. It is clear that the gi satisfy the following recursive
relation and boundary conditions

µg0 = dg1;

µgi = gi−1 + (d− 1)gi+1 for i = 1, . . . , k; (6.3)

gk+1 = 0.
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We will need to know a little about the vector g and the value of µ. We can in fact determine
the explicit solutions to the recursion (6.3). Let

gi = (d− 1)−
i
2 sin((k + 1− i)θ).

We claim that, for an appropriate choice of θ, g satisfies (6.3) with µ = 2
√
d− 1 cos θ.

Indeed, for 0 < i ≤ k we have

gi−1 + (d− 1)gi+1 = (d− 1)−
i−1
2
(
sin((k + 2− i)θ) + sin((k − i)θ)

)
=

√
d− 1(d− 1)−

i
2 2 sin((k + 1− i)θ) cos θ = µgi,

using that

sinα+ sinβ = 2 sin
α+ β

2
cos

α− β

2
.

The condition for i = 0 is then µg0 = dg1, that is,

2
√
d− 1 cos θ sin((k + 1)θ) =

d√
d− 1

sin(kθ).

or equivalently

h(θ) = 2(d− 1) cos θ sin((k + 1)θ)− d sin(kθ) = 0. (6.4)

Since gk+1 = 0, g gives a solution for any root θ of h. The largest possible value of µ will then
come from the smallest positive root θ0 of h, which satisfies 0 < θ0 < π

k+1 , since for very small
values of θ h is positive, and at π

k+1 it is negative. Furthermore, it can be checked that gi is
non-negative and nonincreasing if 0 < θ < π

k+1 . So, if we set θ = θ0 then (6.3) is satisfied and
g ≥ 0 and is decreasing, and so by Claim 6.4 is indeed the unique eigenvector of A(Td,k) of
largest eigenvalue.

Finally, to bound µ, we note that θ0 < π
k+1 ≈ 2π

∆ and hence, using the Taylor expansion of
cos, we see that

cos θ0 > 1− θ20
2

≥ 1− 2π2

∆2
,

and so µ ≥ 2
√
d− 1

(
1− 2π2

∆2

)
.

So, let us f ∈ RV as follows:

fv =


c1gi v ∈ Si,

−c2gi v ∈ Ti,

0 else.

where we choose c1 and c2 so that f ⊥ u. We first claim that

(Af)v ≥ µfv for v ∈
⋃

Si and (Af)v ≤ µfv for v ∈
⋃

Ti.

Indeed, let v ∈ Si for some i > 0. Then of v’s d neighbours some p ≥ 1 belong to Si−1, q belong
to Si and d− p− q below to Si+1 and hence

(Af)v = pc1gi−1 + qc1gi + (d− p− q)c1gi+1 ≥ c1(gi−1 + (d− 1)gi+1),
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since g is non-negative and nonincreasing. However, since g is an eigenvector of A(Td,k) with
eigenvalue µ,

(Af)v ≥ c1(gi−1 + (d− 1)gi+1) = c1(A(Td,k)g)i = c1µgi = µfv.

A similar argument works in the case that v = s or that v ∈
⋃
Ti.

Hence we can argue as follows

fAfT =
∑
v

fv(Af)v =
∑

v∈
⋃

Si

fv(Af)v +
∑

v∈
⋃

Ti

fv(Af)v +
∑
v∈Q

fv(Af)v

≥
∑

v∈
⋃

Si

fvµfv +
∑

v∈
⋃

Ti

fvµfv = µ||f ||22.

However, since by our choice of c1 and c2 we have that f ⊥ u, it follows that λ1 ≥ µ as
claimed.

6.2.1 Extensions of the Alon-Boppana theorem

A quanititative variantiion of Theorem 6.2 states that in fact a constant fraction of the n
eigenvalues of any (n, d)-graph must be almost as large as 2

√
d− 1.

Theorem 6.5 (Serre). For every d ∈ N and ϵ > 0 there exists c = c(ϵ, d) such that every
(n, d)-graph has at least cn eigenvalues greater than 2

√
d− 1− ϵ.

There are several proofs of the above theorem, and the best known bound for the constant c

in the above theorem is c ≈ (d− 1)
−π

√
2
ϵ . We give a short and elegant proof of Ciobǎ.

Proof. Let A = A(G), and consider the matrix (A+ dI)k, where we will choose k later. Let nϵ

be the number of eignevalues of A larger than 2
√
d− 1− ϵ. On the one hand we can bound

trace(A+ dI)k =
n∑

i=1

(λi + d)k ≤ (2d)knϵ + (d+ 2
√
d− 1− ϵ)kn, (6.5)

and on the other hand.

trace(A+ dI)k =
k∑

j=0

(
k

j

)
trace(Aj)dk−j ≥

k
2∑

ℓ=0

(
k

2ℓ

)
nt2ℓd

k−2ℓ,

where t2ℓ are the tree-numbers from the first proof of Theorem 6.2, and we’ve eliminated the
(positive) terms for odd j. Using the estimates we previously gave on these numbers we can
conclude that

trace(A+ dI)k ≥
(

c′

k
3
2

)
n

k
2∑

ℓ=0

(
k

2ℓ

)
(2
√
d− 1)2ℓdk−2ℓ

=

(
c′

k
3
2

)
n
(
(d+ 2

√
d− 1)k + (d− 2

√
d− 1)k

)
≥
(

c′

k
3
2

)
n(d+ 2

√
d− 1)k,
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for some constant c′ > 0. Together with (6.5) we conclude that

nϵ

n
≥

(
c′

k
3
2

)
(d+ 2

√
d− 1)k − (d+ 2

√
d− 1− ϵ)k

(2d)k
.

Some analysis shows that this expression is positive for k = Ω
(
d
ϵ log

(
d
ϵ

))
(for a large enough

leading constant).

Determining the optimal parameter c(ϵ, d) for which Theorem 6.5 holds in general is an open
problem.

Much less is known about the spectrum of irregular graphs. Whilst it is still true that the
largest eigenvalue satisfies d ≤ λ1 ≤ ∆ where d is the average degree and ∆ is the maximum
degree, it is not necessarily true that the second eigenvalue is large as a function of d. Indeed,
consider the lollipop graph Ln, which is formed by identifying some vertex of a clique Kn with a
path of length n. It can be checked that the average degree of Ln is still θ(n), but its generalised
second eigenvalue is small, λ(Ln) ≤ 2. However, if the average degree of the graph is robust
under ‘local’ changes, it can be shown that a similar bound as in the Alon-Boppana theorem
holds even in irregular graphs.

Theorem 6.6 (Hoory). Let d, r ≥ 2 be integers. Suppose that G is a graph whose average degree
is at least d whenever a ball of radius r is deleted from G. Then

λ(G) ≥ 2
√
d− 1

(
1− c log r

r

)
,

where c is some absolute constant.

6.3 Ramanujan graphs

In light of the Alon-Boppana bound, it is interesting to know which graphs achieve the largest
possible spectral graph. We say an (n, d)-graph G is Ramanujan if λ(G) ≤ 2

√
d− 1.

It is not even clear immediately that such graphs exists, why indeed should Theorem 6.2 be
tight? However, it was a major result of Lubotzky, Philips, and Sarnak (who coined the term
Ramanujan graphs) and independently of Margulis that arbitrarily large d-regular Ramanujan
graphs exist when d− 1 is a prime, and this was extended to prime powers by Morgenstern.

Theorem 6.7 (Lubotzky-Philips-Sarnak, Margulis, Morgenstern). For every prime p and every
k ∈ N there exist infinitely many d-regular Ramanujan graphs with d = pk + 1.

We won’t give a proof of this theorem, but will briefly describe the construction of Lubotzky,
Philips, and Sarnak. Let p, q be distinct primes which are both congruent to 1 mod 4. We will
define a (θ(q3), p+ 1)-graph Xp,q.

This graph will be built as a Cayley graph. Given a group G and a subset S ⊂ G which is
closed under inversion (i.e., writing the group operation as muliplication, S = S−1) the Cayley
graph G(G,S) is a graph with vertex set S and edge set

E(C(G,S)) = {(x, xs) : x ∈ G, s ∈ S}.
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For our purpose we take G = PGL(2, q), which is the quotient of the group of 2×2 non-singular
matrices over Fq by the scalar matrices. We fix some integer i with i2 = −1 mod q and define

S =

{(
a0 + ia1 a2 + ia3
−a2 + ia3 a0 − iai

)
: a10 + a21 + a22 + a23 = p, with a0 > 0 odd and a1, a2, a3 even

}
It follows from a theorem of Jacobi that there are exactly p+1 solutions to a10+a21+a22+a23 = p,
and so |S| = p+ 1, and it can be verified that S is closed under inversion as needed.

The graphXp,q is then the connected component of e in C(G,S) (it can be shown that C(G,S)

is either connected, or has two identical components depending on the quadratic residue
(
p
q

)
.

In both cases it can be shown that the second largest eigenvalue is then bounded as in Theorem
6.7.

A very natural question to ask is whether this spectral gap can be obtained in graphs of
arbitrary size.

Question 6.8. Do there exist arbitrary large d-regular Ramanujan graphs for all d ≥ 3?
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7 The spectrum of random graphs

In this section we return to the question of determing typical properties of (n, d)-graphs, in
particular the typical spectrum of such a graph. A powerful way to approach such questions
is by using the probabilistic method – if we have a method to sample an (n, d)-graph uniformly
at random then we can consider the graph paramaters of this random graph as random vari-
ables, whoch we can investigate using probabilistic tools. Any statement which holds with high
probability for a random (n, d)-graph must be true for the vast majority of (n, d)-graphs.

7.1 The bulk of the spectrum

Whilst we are most interested in the extreme eigenvalues λ2 and λn, it will be much easier to
analyse the ‘ bulk’ of the spectrum - most of the eigenvalues which lie ‘in the middle’, and so
we will do this first.

The adjacency matrix of a random (n, d)-graph is a random symmetric matrix, but the entries
are heavily dependent on each other. If we loosen this requirement, and consider random sym-
metric matrices where the entries (in the upper triangle) are independent from each other, then
there is a famous theorem of Wigner, Wigner’s semicircle law, which describes the distribution
of the eigenvalues.

Theorem 7.1 (Wigner). Let An be an n × n symmetricwhere matrix, where the off-diagonal
entries are distributed independently as F , and the diagonal entries independently as G. Fur-
thermore, assume that var(F ) = var(G) = σ2 and that F and G have finite moments. Define
the empirical eigenvalue distribution as

Wn(x) =
1

n
|{i : λi(An) ≤ x}|,

where λ1(An) ≥ . . . ≥ λn(An) are the eigenvalues of An. Then for every x,

W (x) = lim
n→∞

Wn(2xσ
√
n) =

2

π

∫ x

−1

√
1− z2dz.

Roughly, Theorem 7.1 says that, under some weak conditions on the distributions of the
entries, the eigenvalues of a large random symmetric matrix are distributed ‘close to a semicircle’.

If we randomly generate and plot the eigenvalues of a random (n, d)-graph then we find that,
for small d, as n gets large, the distribution no longer tends to a semicircle, but rather more of a
saddle shape, with two peaks towards the extremes of its support. However, as both d and n get
very large, the distribution will again tend to a semicircle. In fact, this behaviour is not limited
to just random graphs, it will hold whenver the graph has very few short cycles. Specifically,
if we let Ck(G) be the number of cycles of length k in G then the following theorem holds for
whenever Ck(G) = o(|G|) for every fixed k ≥ 3, a property that can be seen to hold whp for
random d-regular graphs.

Theorem 7.2 (McKay). Let Gn be an infinite sequence of d-regular graphs such that Ck(G) =
o(|G|) for all k ≥ 3. Define the empircal eigenvalue distribution as

F (Gn, x) =
1

|Gn|
|{i : λi(Gn) ≤ x}|.
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Then for every x,

F (x) = lim
n→∞

F (Gn, x) =

∫ x

−2
√
d−1

d
√
4(d− 1)− z2

2π(d2 − z2)
dz.

Note that the limit distribution F (x) is supported on [−2
√
d− 1, 2

√
d− 1], which is the

spectrum of Td, see Theorem 6.1. The main idea behind the proof is that, since there are
only very few short cycles, the neighbourhood of most vertices is almost a tree. Hence, for
most vertices v, the number of closed walks of length k rooted at v is roughly equal to tk, the
analogous quantity for Td. To make this argument we require a good estimate for tk, as opposed
to the lower bound we used in Theorem 6.2.

Lemma 7.3. For every s ∈ N

t2s−1 = 0 and t2s =

s∑
j=1

(
2s− j

s

)
j

2s− j
dj(d− 1)s−j .

Proof. The first claim is obvious since Td is bipartite, and hence contains no odd length closed
walks. for the second, consider any closed walk W of length 2s rooted at v. We can associate
to W a sequence 0 = δ0, δ1, . . . , δ2s = 0, where δi is the distance from v at time i. Clearly, the
δi are all non-negative integers and |δi − δi−1| = 1 for all i.

It can be seen that the number of such sequences in which exactly j of the terms δi are equal
to 0 is given by (

2s− j

s

)
j

2s− j
.

This is a simple generalization of the Catalan numbers.

Given such a sequence, how many walks W correspond to this sequence? Well, each walk
takes s steps away from v and s steps towards v; namely, there are s indices with δi−δi−1 = 1 or
−1, respectively. In a step towards v, the next vertex is uniquely determined, whereas on steps
aways from d we have d choices when δi = 0 (and the walk is currently at v), and d− 1 choices
when δi ̸= 0. Since these happen j and s− j times, respectively, the conclusion follows.

Now, if Ck(Gn) = o(|Gn|) for every fixed k, then for every k almost every vertex has a
cycle-free k-neighbourhood. Therefore there are (1+ o(1))|Gn|tr closed paths of length r in Gn.
However, on the other hand, the number of closed walks of length r in Gn is equal to the trace
of A(Gn)

r, which is equal to the sum of the rth powers of the eigenvalues of Xi. Hence

tr = (1 + o(1))
1

|Gn|

n∑
i=1

λi(Gn)
r

Hence, in the limit we see that F (x) satisfies∫
xrdF (x) = tr

for all r. It remains then to recover F (x) from its moments, which can be done for example by
expanding F in the basis of Chebyshev polynomials.
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7.2 The extreme eigenvalues

So, the proportion of eigenvalues of a typical (n, d)-graph which lie outside of the range [−2
√
d− 1, 2

√
d− 1]

is tending to 0 as n gets very large, but we this doesn’t tell us much about the typical spectral
gap, since there may be a vanishingly small proportion of the eigenvalues outside of this range
(and indeed, λ1 = d always does).

However, the following theorem of Friedman actually tells us that the typical extremal eigen-
values do not lie too far from the bulk of the eigenvalues.

Theorem 7.4 (Friedman). Let G be a random (n, d)-graph, then for every ϵ > 0 whp λ(G) ≤
2
√
d− 1 + ϵ.

Now that this almost gives an answer to Question 6.8, as it implies that nearly all (n, d)-
graphs are very close to being Ramanujan. In fact, it is conjectured that a positive proportion
of (n, d)-graphs should be Ramanujan, which is supported by computational evidence for small
d.

The proof, which is too long and complex to include in detail, is based on the trace method,
which we used earlier in our proof of Theorem 6.2: One estimates, by combinatorial means the
trace of A(G)2k for some large k and substracts the ‘leading’ term λ2k

1 = d2k from it. For large
enough k what remains will be dominated by the term λ2k, and so we can estimate |λ|. On the
one hand, the larger we choose k, the more dominant the contribution of λ2k is and so the better
our approximation comes, but on the other hand as k grows the enumeration of the number of
closed walks become less precise, and so one needs to choose k carefully.

Instead, we will give a proof of a weaker bound using similar ideas.

Theorem 7.5 (Broder-Shamir). Let G be a random (n, 2d)-graph. Then λ(G) = Op

(
d

3
4

)
.

Rather than working again with the configuration model we will instead work with a slightly
simpler, and more convenient model, which generates regular graphs of even degrees called the
permutation model.

We choose a random 2d-regular graph on n vertices by choosing d Hamilton cycles in Kn

independently and uniformly at random, and taking their union. It is easy enough to generate
Hamlton cycles at random, we simply pick a random permutation of the vertices, and so this
model is easy to generate. So, more explicitly, we choose d permutations π1, . . . , πd in the
symmetric group Sn independently and uniformly at random and we form our graph G(n, 2d)
on [n] by taking

E(G) = {(v, πi(v)) : i ∈ [d], v ∈ [n]}.

However, there is a problem with this model, it very clearly is not uniformly distributed on
the set of all (n, 2d)-graphs! Indeed, G(n, 2d) always contains a Hamilton cycle, by construction,
but there exist (n, 2d)-graphs which are no Hamiltonian. However, it can be shown that for d ≥ 2
the distribution of G(n, 2d) is contiguous to the uniform distribution: Namely a family of events
occurs whp in the one distribution iff it occurs whp in the other distribution. In other words,
the distributions agree on asymptotically almost sure events.
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Proof of Theorem 7.5. Let G = G(n, 2d) be generated according to the permutation model with
permutations π1, . . . , πd, and let Â be the transition matrix of the random walk on G (i.e.,
1
2dA(G)). Let us write 1 = µ1 ≥ µ2 ≥ . . . ≥ µn for the eigenvalues of Â and ρ = max{|µ2|, |µn|}.
Since the eigenvalues of Âk are µk

i , we have that

ρ2k ≤ tr
(
Â2k

)
− 1

for any positive k. In particular, by Jensen’s inequality we see that

E(ρ) ≤
(
E
(
ρ2k
)) 1

2k ≤
(
E
(
tr
(
Â2k

))
− 1
) 1

2k
.

We will apply this with a particular choice of k, that we will fix later, that will be large, but
still much smaller than n.

Observe that the walks in G starting at the vertex 1 are in one to one correspondence to
words over the alphabet Σ = {π1, π−1

1 , . . . , πd, π
−1
d }. Indeed, we can think of the directed edge

(v, πi(v)) as being labelled by πi and the directed edge (πi(v), v) as being labelled with π−1
i , and

interpret a word as a sequence of edge labels to follow.

In this way a word ω ∈ Σ2k can be thought of as a function ω : V → V which maps a
vertex i ∈ V to the vertex j obtained by following the walk ω starting at i. In fact, as a

composition of permutations this is also a permutation. Then, since
(
Â2k

)
i,i

can be interpreted

as the probability that a random walk of length 2k starting at i also ends at i, if we pick a word
ω ∈ Σ2k uniformly at random we see that

E
(
tr
(
Â2k

))
= E(|{i : ω(i) = i)}|) = nP(ω(1) = 1),

where the last equality follows by symmetry.

We will analyse this probability in two parts, by considering the two sources of randomness,
the random word ω over the alphabet Σ and the random permutations πi, separately. We first
consider the structure of the word ω as an element of the free group in d generators. We show
that a random word (or at least, a random word once we have reduced consecutive pairs of the
form πiπ

−1
i ) is very unlikely to exhibit some nontrivial periodicity properties, and so almost all

reduced words are good (for the right definition of good). We then study, for a fixed reduced
good word, the probability that ω′(1) = 1, where this probability is taken over our choices for
π1, . . . , πd ∈ Sn.

So, given a word ω ∈ Σ2k let ω′ = red(ω) be the word obtained by repeatedly cancelling
factors of the form πiπ

−1
i from the word until non remain. Clearly P(ω(1) = 1) = P(ω′(1) = 1),

and so it will be sufficient to consider these reduced words. We say that a reduced word ω′

is bad if it has the form ω′ = ωaω
r
bω

−1
a for some words ωa, ωb and some j ≥ 2. For example,

the word π1π
−1
3 π2π4π2π4π3π

−1
1 = (π1π

−1
3 )(π2π4)

2(π1π
−1
3 )−1 is bad. Note in particular that the

empty word is bad.

It will turn out that it is feasible to calculate the probability, over choices of πi, that ω
′(1) = 1

for a good reduced word, and also the probability, over choices of ω, that ω′ = red(ω) is good.
The first claim bounds this latter probability.

Claim 7.6. Let ω ∈ Σ2k be chosen uniformly at random and let ω′ = red(ω). Then

P(ω′ is bad) ≤ k2
(
2

d

)k

.
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Proof of claim. The basic idea of the proof is that if ω has a bad reduction, it can be determined
from a very small subset of its letters: namely half of the pairs πiπ

−1
i which we reduce and then

the words ωa and ωb. In particular, this is less than half of the letters appearing in ω. However,
implementing this idea is tricky. One important observation is that in order to generate ω
uniformly at random we can choose each letter independently and uniformly at random from Σ.

First, let us oberve that all words ω of length 2k which reduce to a word ω′ of length 2ℓ can
be generated as follows: We start with a string which consists of k−ℓ left brackets and k−ℓ right
brackets, where each initial segment contains at least as many left brackets as right brackets.
Note that the brackets in such a sequence then can be paired up in a unique ‘permissable’ way,
so that if we repeatedly delete adjacent pairs we end up with an empty string.

The level of an initial segment of this string is the difference between the number of left and
right brackets that it contains. Note that the level is always non-negative. We now place a total
of 2ℓ ∗s into our sequence, where we are only allowed to place (an abitrary number of) ∗s at a
point where the level is 0 to obtain a string in {(, ), ∗}2k. However, we note that the string is
in fact uniquely determined by the positions of the k − ℓ left brackets. Indeed, given an initial
segment if the next entry is not a left bracket then either the level is 0, in which case the next
entry cannot be a right bracket and so must be a ∗, or the level is not 0, in which case the next
entry cannot be a ∗ and must be a right bracket. It follows that the total number of such strings
we can build in this manner is

(
2k
k−ℓ

)
. Let us write S(k, ℓ) for the set of all such strings.

We say that a word ω ∈ Σ2k matches such a string S ∈ S(k, ℓ) if two conditions hold:

1. We can assign a letter in Σ to each left bracket and ∗, and then assign to each right bracket
the inverse of the letter assigned to its paired left bracket, in such a way that the word we
obtain is ω;

2. The sequence ω(∗) assigned to the stars is equal to red(ω) = ω′.

Given a fixed string S ∈ S(k, ℓ), we want to consider the probability that ω matches S and
red(ω) = ω′ is bad. This is a little tricky to bound, since these two events are not necessarily
independent, and also part of the probability that ω matches a string, specifically the part about
the sequence assigned to the ∗s being reduced, is hard to work with. So, instead let us say that
ω weakly matches S if ω just satisfies condition 1 above. Then it is clear that

P(ω matches S and ω′ is bad) ≤ P(ω weakly matches S and ω(∗) is bad)

since the latter condition is strictly less restrictive. However, now the two events are genuinely
independent, since they depend on the value of letters at disjoints sets of positions in the word
ω, and so

P(ω weakly matches S and ω(∗) is bad) ≤ P(ω weakly matches S)P(ω(∗) is bad)

Bounding the first quantity is easy - since we choose the letters of ω independently and
uniformly at random, the probability that ω weakly matches S is at most the probability that
the letter assigned to the left brackets match the letters assigned to the right brackets, which is
at most (2d)−k+ℓ.
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In order to bound the probability of the second event, let us split into cases according to
the length of the words ωa and ωb in the decomposition ω(∗) = ωaω

r
bω

−1
a . Note that, since

ω(∗) ∈ Σ2ℓ, the lengths of ωa and ωb determine j, which by assumption ≥ 2.

For a fixed r and s, the probability that there exist words ωa and ωb such that |ωa| = r and
ωb = s and ω(∗) = ωaω

r
bω

−1
a can be very naively bounded above is by (2d)−ℓ, since at the very

least the second half of the word ω(∗) is then determined by the first half. It follows that

P(ω(∗) is bad) ≤
∑
r

∑
s

(2d)−ℓ ≤ k2(2d)−ℓ

and so
P(ω matches S and ω′ is bad) ≤ (2d)−k+ℓk2(2d)−ℓ = k2(2d)−k

Putting this all together we see that

P(ω′ is bad) =
∑
ℓ≤k

P(ω′ is bad and |ω′| = 2ℓ)

≤
∑
ℓ≤k

∑
S∈S(k,ℓ)

P(ω matches S and ω′ is bad)

≤
∑
ℓ≤k

(
2k

k − ℓ

)
k2(2d)−k

= k2(2d)−k
∑
ℓ≤k

(
2k

k − ℓ

)
= k2(2d)−k22k−1

≤ k2
(
2

d

)k

.

So, let us fix a good reduced word ω′ of length s ≤ 2k. We are interested in the probability,
over our random choices of πi, that ω′(1) = 1. Recall that ω′ is a word of length s over the
alphabet Σ, and once we choose the permutations πi it will correspond to a closed walk on the
vertices [n]. At a high level then, the idea of the proof is to think of exposing this path, via our
choice of πi, ‘as we go’. That is, we will only expose the value of πi(j) when it becomes relevant
in this path.

More precisely, we note that we can expose sequentially the image or preimage of elements
i ∈ [n] under πi uniformly at random from all ‘possible’ choices (i.e., values that are not excluded
by the previous values we exposed) and the resulting permutation will be uniformly distributed
on Sn.

So, our word ω′ corresponds to a walk v0, v1, . . . , vs and we ‘uncover’ the vertices one by one.
For each i we have that vi = σi(vi−1), where σi is the ith letter in ω′ (note that σi = π±1

j for
some j). We call step i in the walk free if the value of σi(vi−1) has not yet been ‘revealed’ in
a previous step, and is so undetermined. If this is the case, and t values of σi have previously
been revealed (i.e., σj = σ±1

i for t many free steps j ≤ i), then we select vi uniformly at random
from among the n− t elements not assigned to the range of σi. Otherwise the step is forced and
we set vi to be the, previously revealed, value of σi(vi−1).
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We note that,by our previous observations, the walk v0, v1, . . . , vs generated in this way has
the same distribution as if we chose the πi independently and uniformly at random from Sn. We
call a step i a coincidence if it is free and moreover the (randomly selected) vertex vi coincides
with a previous step on the path, i.e. vi ∈ {v0, . . . , vi−1}. If we let Ci be the event that step i
is a coincidence then it is clear that

P(Ci|v0 = u0, . . . , vi−1 = ui−1) ≤
s

n− s

since, if step i is free, then we have at least n− s choices for vi (since at most s value of any πj
have been revealed), and for the step to be a coincidence this choice must coincide with one of
the i ≤ s vertices already visited in the walk. Hence the probability of a coincidence at step i is
at most s

n−s ≤ 2k
n−2k , independent of the preceding history of the process.

We first claim that if the event ω′(1) = 1 holds, then at least one coincidence must occur.
Indeed, since vs = 1 there is some k ∈ [n] such that there exists i < j ∈ [s] with vi = vj = k. Let
us choose such a k where j is minimal (and so vi and vj are the first two times that k appears in
the walk). Then, step i must have been free, since k had not previously appeared in the walk.
Furthermore, unless σj ∈ {σi, σ−1

i+1} then the jth step was also a coincidence, since we can’t
previously have assigned the value k for σj . In the first case, if σj = σi then we must have that
vi−1 = σ−1

i (k) = vj−1 = σ−1
j (k), contradicting our choice of k, i and j. Similarly in the second

case if σj = σ−1
i+1 then we see that, since ω′ is reduced, j−1 ̸= i+1, and so vi+1 = vj−1 = σi+1(k)

contradicts our choice of k, i and j.

So, we can bound the probability that ω′(1) = 1 by the sum of the following two events

(a) At least two coincidence occurred along the path;

(b) Exactly one coincidence occurred and vs = 1.

The first probability is easily bounded. Conditioned on the positions i and j of the first two
coincidences, the probability that the two coincidence occur is at most

P(Ci)P(Cj |Ci) ≤
(

2k

n− 2k

)2

.

However, there are at most s2 choices for i and j and so the total probability that (a) occurs is

at most O
(

s2k2

(n−2k)2

)
= O

(
k4

(n−2k)2

)
.

Let us then bound the probability that vs = 1 and there is exactly one coincidence is at most
1

n−s+1 ≤ 1
n−2k .

A realisation of ω′ is any walk on [n] which corresponds to ω′ under a choice of the permu-
tations πi. Let us consider some realisation which satisfies the conditions in the lemma, i.e.,
vs = 1 and there is exactly one coincidence.

Since ω′ is reduced, any initial segment of such a realisation preceding the single coincidence
is a simple path. Indeed, the first cycle we close must be because of a coincidence, since the
last vertex visited vi has only been determined as the image of vi−1 under σi, and the next step
cannot be σ−1

i since ω′ is reduced. Hence, the step at which the coincidence takes place turns
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this path into a ‘lollipop’, a cycle (possibly a loop) with a (possibly empty) tail. Since no more
coincidences take place, and ω′ is reduced, it is easy to check by the same argument as before,
that no additional edges are visted by the walk after this point.

In particular, since there are no more coincidences and ω′ is reduced, in order to eventually
reach 1 the walk must from this point revolve around the cycle j times for some r − 1 ≥ 0 and
then follow the tail to 0. However, since ω′ is good, it follows that r − 1 = 0!

It follows that ω′ = ωaωbω
−1
a , where ωa corresponds to the walk along the tail, and so may

be empty, and the word ωb corresponds to the walk around the cycle. Moreover, ωb must be
cyclically reduced (i.e., it is reduced and the first and last letters are non inverses of each other).
Indeed, if v is the vertex where the coincidence occurs and the walk leaves v on an edge labelled
πi to a vertex w, then if the edge preceding the first coincidence were to be labelled π−1

i then
it cannot be a free choice, since we have already revealed that πi(v) = w. However, then this
condition determines the decomposition ω′ = ωaωbω

−1
a .

Hence, if we fix an ω′ which can result in such a realisation, there is a fixed decomposition
ω′ = ωaωbω

−1
a and so, if we let r = |ωa| + |ωb|, the probability that the realisation satisfies the

conditions in the lemma is at most the probability that the (r − 1)th step is a free move to
a specific previously visited vertex v|ωa|. However the probability that this happens is then at

most 1
n−r ≤ 1

n−s+1 and the claim follows.

Putting the bounds of the two claims together we see that

P(ω(1) = 1) = P(ω′(1) = 1) ≤ P(ω′ is bad) + P(ω′ is good and ω′(1) = 1)

≤ k2
(
2

d

)k

+O

(
k4

(n− 2k)2

)
+

1

n− 2k
.

If we take k = (2− ϵ) logd/2 n for an appropriately small ϵ then we see that

P(ω(1) = 1) =
k2

n2−ϵ
+

1

n
+O

(
k

n2

)
+O

(
k4

n2

)
and so

E(ρ) ≤
(
E
(
tr
(
Â2k

))
− 1
) 1

2k
= (nP(ω(1) = 1)− 1)

1
2k

=

(
k2

n1−ϵ
+O

(
k4

n

)) 1
(4−2ϵ) logd/2 n

= (1 + o(1))

(
2

d

) 1−ϵ
4−2ϵ

= (1 + o(1))

(
2

d

) 1
4

for ϵ(d) sufficiently small. In particular, by Markov’s inequality, with a probability tending to 0

with C we have that ρ ≤ C
(
2
d

) 1
4 . In particular,

λ(G) = dρ = Op

(
d

3
4

)
.
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8 The Margulis construction

Finally, we come to the problem of actually constructing expander graphs, or, as turns out to
be the harder part, proving their expansion properties.

In this section we will describe the first explicit construction of a family of expander graphs,
which is particularly elegant.

They can be viewed as a discrete analogue of the following continuous object. Consider an
infinite graph whose vertex set is the unit torus, viewed as I × I where I is the half open unit
interval [0, 1). The edges are defined by two linear transformations

T (x, y) = (x+ y, y) mod 1 and S(x, y) = (x, x+ y) mod 1,

where the neighbours of a point (x, y) are given by S(x, y), T (x, y), S−1(x, y) and T−1(x, y).
Gabber and Galil showed the following theorem on the expansion of this infinite graph.

Theorem 8.1. There exists an explicit ϵ > 0 such that for any measurable A ⊆ I × I with
Lebesgue measure µ(A) ≤ 1

2
µ(A ∪ Γ(A)) ≥ (1 + ϵ)µ(A),

where Γ(A) = S(A) ∪ T (A) ∪ S−1(A) ∪ T−1(A) is the neighbourhood of A.

There are natural conjectures for what the optimally expanding sets should be. Namely
if we take A = {(x, y) : |x| + |y| > t} (where |x| = min{x, 1 − x}) for some small t, then
A ∪ Γ(A) = {(x, y) : |x|, |y| < t}, so that

µ(A ∪ Γ(A)) = 4t2 = 2µ(A).

Conjecture 8.2 (Linial). For every A ⊆ I × I of Lebesgue measure µ(A) ≤ 1
2 ,

µ(A ∪ Γ(A)) ≥ 2µ(A).

There is some evidence for this conjecture, as it was recently shown, via a short elementary
proof using symmetrisation, that this bound does hold if we take the similar graph defined on
R2 instead.

In order to define our expander family, we will define discrete analogues of the graph de-
fined above. This construction is very simple, and easy to generate, but proving its expansion
properties turns out to be difficult!

We work again over a (discrete) torus and take the same linear transformations to define our
edge set, however we will also take some affine shifts of these transformations (in some way as
a discrete substitute for the continuity of the previous example). In fact, these extra edges are
not necessary for the expansion of the graphs, but it will make the analysis easier.

Let Gn = (V,E) be an 8-regular graph with vertex set V = Zn × Zn the discrete torus. We
let

T1 =

(
1 2
0 1

)
, T2 =

(
1 0
2 1

)
, e1 =

(
1
0

)
, e2 =

(
0
1

)
,

68



then the neighbours of a vertex v are given by Tvv, T2v, T1v + e1, T2v + e2, and the other four
neighbours are given by the inverse transformations, where all calculations are performed mod
n.

These are not quite, but are closely related to, the graphs that Margulis considered. He
showed that this is a family of expander graphs, but his proof was existential and did not give a
lower bound on the spectral gap. Later on, using harmonic analysis, Gabber and Galil gave the
following explicit lower bound on the gap (in fact, an upper bound on the generalised second
eigenvalue)

Theorem 8.3 (Gabber-Galil). For each n ∈ N the graph Gn satisfies λ(Gn) ≤ 5
√
2 < 8.

We will prove a slightly weaker bound on λ (which is still strictly smaller than 8), following a
simplification of a proof of Jimbo and Marouka due to Boppana. It is then a simple consequence
of Cheeger’s inequality that these graphs are a family of α-expanders for some fixed α > 0. As
always we are interested in the Rayleigh quotient of a vector f such that f ⊥ u. In this section
it will be convenient to consider our vectors instead as functions f : Z2

n → R. In this language
we are interested in a function f such that

∑
x f(x) = 0 and

2
∑

(x,y)∈E

f(x)f(y) = fAfT ≤ 5
√
2||f ||22 = 5

√
2
∑
x

f(x)2,

Hence we can rewrite Theorem 8.3 in the following form

Theorem 8.4. For any f : Z2
n → R such that

∑
x f(x) = 0, the following inequality holds:∑

x∈Z2
n

f(x) ·
(
f(T1x) + f(T1x+ e1) + f(T2x) + f(T2x+ e2)

)
≤ 5√

2

∑
x∈Z2

n

f(x)2. (8.1)

In order to prove this, we will need to introduce some tools from fourier analysis.

8.1 A (very) brief introduction to discrete fourier anaylysis

We should stress that the following is very much a ‘whistle-stop’ introduction to the idea of
discrete fourier analysis, which has (relatively) recently been used with much success in various
areas of discrete mathematics. We will state, without proof, some of the basic facts and tools
from the area, but we note that none of the results we mention are difficult to prove (and we
will prove some of them on the example sheet).

A character of a group H is a homomorphism χ : H → C∗ (the multiplicative group of C),
i.e, a function such that χ(gh) = χ(g) ·χ(h) for all g, h ∈ H. Let Ĥ denote the set of characters
of H, which we forms an abelian group under pointwise multiplication. Note, in particular, that
for any finite group the range of χ must be contained in the unit circle. Furthermore, when H
is abelian (as will be the case in this section) we will write the group operation as +.

For example every group has the trivial character χ0 which maps all elements to 1. It can
be shown that the cyclic group Zn has n characters given by the functions

χk(h) = e
2πikh

n for 0 ≤ k ≤ n− 1.
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More generally, for the group Z2
n we have n2 characters, one for each b = (b1, b2) ∈ Z2

n, where

χb(a1, a2) = ωa1b1+a2b2 = ω⟨a,b⟩,

for some primitive nth root of unity ω.

We write F(H) for the set of all complex functions on H, which is a linear space with an
inner product given by

⟨f, g⟩ =
∑
x∈H

f(x)g(x).

Broadly the idea of fourier analysis on a group H is to expand functions in F as linear combi-
nations of characters.

Proposition 8.5. Every finite abelian group H has |H| distinct characters, which can be nat-
urally indexed as {χx : x ∈ H}, which form an orthogonal basis of F . In particular every
f : H → C can be uniquely expressed as a sum f = 1

|H|
∑

x∈H f̂(x)χx, where f̂ : H → C is the
discrete fourier transform of f , given by

f̂(x) = ⟨f, χx⟩ =
∑
y∈H

f(y)χx(y) =
∑
y∈H

f(y)χx(−y).

Proof. We first note that for any character H and b ∈ H

χ(b)
∑
a∈H

χ(a) =
∑
a∈H

χ(a+ b) =
∑
c∈H

χ(c).

In particular, if χ is non-trivial then there exists b such that χ(b) ̸= 1 and it follows that∑
a∈H

χ(a) = (χ(b)− 1)
∑
a∈H

χ(a) = 0.

It follows that for any two distinct characters χ1 and χ2, χ1χ2is a non-trivial character and
hence

⟨χ1, χ2⟩ =
∑
a∈H

χ1(a)χ2(a) =
∑
a∈H

(
χ1χ2

)
(a) = 0.

Furthermore, for any χ ∈ Ĥ

⟨χ, χ⟩ =
∑
a∈H

χ(a)χ(−a) =
∑
a∈H

χ(0) = |H|.

In particular, there can be at most |H| many distinct characters. In the case of Zn it is
easy to exhibit n distinct characters χ1, . . . , χn as above. More generally it is easy to see that if
H = H1⊕H2 and χi are characters of Hi then χ(h1, h2) = χ1(h1)χ2(h2) is a character of H and
that this map from Ĥ1 × Ĥ2 → Ĥ is injective. In particular, for cardinality reasons, it follows
that Ĥ ∼= Ĥ1 × Ĥ2.

Using the classification theorem for finite abelian groups, and the above observation, we
see that, when H is abelian, H ∼= Ĥ (although this isomorphism is not natural) and so, by
dimensional considerations Ĥ forms a basis for the |H|-dimensional space F(C).
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Whilst H ∼= Ĥ, we treat the two spaces differently in that we normally consider H with
the ‘counting measure’, and consider Ĥ with a ‘probability measure’, which is just given by
normalising our sums by the size of the group. For example, we can define another type of inner
product

E
a∈H

f(a)g(a) =
1

|H|
∑
a∈H

f(a)g(a).

This perhaps makes sense since in a broader setting this dualising operation turns discrete groups
into compact groups, and vice versa.

In our particular case of interest, H = Z2
n, it can be checked that the discrete fourier transform

of f takes the form

f̂(x) =
∑
b∈Z2

n

f(b)ω−b1x1−b2x2 .

In the following proposition we collect some basic properties of the fourier transform.

Proposition 8.6. Let H be an abelian group and let f, g ∈ F(H).

(a)
∑

a∈H f(a) = 0 ⇐⇒ f̂(0) = 0;

(b) ⟨f, g⟩ = 1
|H|⟨f̂ , ĝ⟩;

(c) As a special case of the above with f = g we obtain Parseval’s identity∑
a∈H

|f(a)|2 = 1

|H|
∑
a∈H

|f̂(a)|2;

(d) the inverse formula

f(a) =
1

|H|
∑
b∈H

f̂(b)χb(a);

In the specific case H = Z2
n we also have the useful shift property

(e) If A is a non-singular 2× 2 matrix over Zn, b ∈ Z2
n and g(x) = f(Ax+ b), then

ĝ(y) = ω−⟨A−1b,y⟩f̂((A−1)Ty).

Proof. For statement (a) we note that

f̂(0) = ⟨f, χ0⟩ =
∑
a∈H

f(a)χ0(a) =
∑
a∈H

f(a).

For (b), known as the Plancherel formula, we first define the character table C of H, which
is a matrix whose rows and columns are indexed by H such that Ca,b = χa(b). We note that it
follows from Proposition 8.5 that CC∗ = |H|I. Indeed

(CC∗)a,b =
∑
c

χa(c)χb(c) = |H|1a=b,
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where we used the orthonormality of Ĥ and the fact that∑
a∈H

χ(a)χ(a) =
∑
a∈H

χ(a)χ(a)−1 =
∑
a∈H

χ(a)χ(a−1) =
∑
a∈H

χ(1) = |H|.

Since, by definition, f̂ = fC, we see that

⟨f̂ , ĝ⟩ = f̂ · ĝ∗ = fCC∗g∗ = |H|f · g∗ = |H|⟨f, g⟩.

Then (c) follows by setting f = g.

For (d) we note that for any b ∈ H

||χb||22 = ⟨χb, χb⟩ =
∑
a∈H

χb(a)χb(a) =
∑
a∈H

χb(a)χb(−a) =
∑
a∈H

χb(0) = |H|.

Hence, since the characters form an orthogonal basis of F(H)

f =
∑
b∈H

⟨f, χb⟩
||χb||22

χb =
1

|H|
∑
b∈H

f̂(b)χb.

Finally for (e) we see that

ĝ(y) =
∑
z∈H

g(z)χz(−y)

=
∑
z∈H

f(Az + b)ω⟨z,y⟩

=
∑
x∈H

f(x)ω⟨A−1(x−b),y⟩

= ω−⟨A−1b),y⟩
∑
x∈H

f(x)ω⟨A−1x,y⟩

= ω−⟨A−1b),y⟩
∑
x∈H

f(x)ω⟨x,(A−1)Ty⟩

= ω−⟨A−1b,y⟩f̂((A−1)Ty).

8.2 Proof of Theorem 8.4

Our aim is to express (8.1) in terms of the fourier coefficients of f . The condition
∑

x f(x) = 0

can be rewritten as f̂(0, 0) = 0 by (a). Then, using Parseval’s identity (c) to see that∑
x∈Z2

n

f(x)2 = ||f ||22 =
1

n2
||f̂ ||22,
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and furthermore by the Plancherel formula (b) and the shift property (e) we see that∑
x∈Z2

n

f(x)f(T1x) =
∑
x∈Z2

n

f(x)f(T1x)

=
1

n2

∑
x∈Z2

n

f̂(x)f̂(T1x)

=
1

n2

∑
x∈Z2

n

f̂(x)f̂((T−1
1 )Tx)

=
1

n2

∑
x∈Z2

n

f̂(x)f̂(T−1
2 x)

since T−1
1 =

(
1 −2
0 1

)
= (T−1

2 )T , and

∑
x∈Z2

n

f(x)f(T1x+ e1) =
∑
x∈Z2

n

f(x)f(T1x+ e1)

=
1

n2

∑
x∈Z2

n

f̂(x)f̂(T1x)

=
1

n2

∑
x∈Z2

n

f̂(x)ω−⟨T−1
1 e1,x⟩f̂(T−1

2 x)

:=
1

n2

∑
x∈Z2

n

ω−x1 f̂(x)f̂(T̂1x).

A similar calulation for the other two terms leads to the following inequality which is equivalent
to (8.1) ∑

x∈Z2
n

f̂(x)
(
f̂(T−1

2 x)
(
1 + ω−x1

)
+ f̂(T−1

1 x)
(
1 + ω−x2

))
≤ 5√

2

∑
x∈Z2

n

|f̂(x)|2.

In fact, we can prove such a bound for an arbitrary function F : Z2
n → C with F (0, 0) = 0.

Lemma 8.7. For every F : Z2
n → C with F (0, 0) = 0,∣∣∣∣∣∣

∑
x∈Z2

n

F (x)
(
F (T−1

2 x)
(
1 + ω−x1

)
+ F (T−1

1 x)
(
1 + ω−x2

))∣∣∣∣∣∣ ≤ 5√
2

∑
x∈Z2

n

|F (x)|2.

It is clear then, the Theorem 8.4 follows from Lemma 8.7. Replacing F with G = |F |, using
the triangle inequality and the identity |1 + ω−t| = 2

∣∣cos πt
n

∣∣ we see that it suffices to prove∑
x∈Z2

n

2G(x)
(
G(T−1

2 x)
∣∣∣cos πx1

n

∣∣∣+G(T−1
1 x)

∣∣∣cos πx2
n

∣∣∣ ) ≤ 5√
2

∑
x∈Z2

n

G(x)2, (8.2)

for any real function G : Z2
n → R.

One way to approach the problem that the ‘product’ terms on the left are difficult to sum,
would be to try to replace them with square terms (which are what appear on the right) using
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the elementary inequality 2αβ ≤ α2 + β2. This would then lead to, for any x∑
x∈Z2

n

2G(x)
(
G(T−1

2 x)
∣∣∣cos πx1

n

∣∣∣+G(T−1
1 x)

∣∣∣cos πx2
n

∣∣∣ )
≤
∑
x∈Z2

n

2G(x)2 +G(T−1
2 x)2

∣∣∣cos πx1
n

∣∣∣+G(T−1
1 x)2

∣∣∣cos πx2
n

∣∣∣
≤
∑
x∈Z2

n

4G(x)2,

using that fact that T−1
2 and T−1

1 are invertible and that | cosx| ≤ 1. However this is not quite
good enough, in particular for small values of x where the cosines are close to 1.

However, more generally we can use the inequality 2αβ ≤ γα + γ−1β which holds for any
positive γ. Using this inequality for a fixed γ would also not be useful, however we can apply it
with a cleverly chosen γ :

(
Z2
n

)2 → R to the individual terms

2G(x)G(y) ≤ γ(x,y)G(x)2 + γ(x,y)−1G(y)2.

If we choose γ so that γ(x,y)γ(y,x) = 1 then we can write this as

2G(x)G(y) ≤ γ(x,y)G(x)2 + γ(y,x)G(y)2.

The final little trick is to notice that (T1x)2 = x2 for all x and so∑
x∈Z2

n

γ(T−1
1 x,x)G(T−1

1 x)2
∣∣∣cos πx2

n

∣∣∣ = ∑
T1x=y∈Z2

n

γ(y, T1y)G(y)2
∣∣∣∣cos π(T1y)2

n

∣∣∣∣
=
∑
y∈Z2

n

γ(y, T1y)G(y)2
∣∣∣cos πy2

n

∣∣∣
and a similar equality holds for T2.

This allows us to bound∑
x∈Z2

n

2G(x)
(
G(T−1

2 x)
∣∣∣cos πx1

n

∣∣∣+G(T−1
1 x)

∣∣∣cos πx2
n

∣∣∣ )
≤
∑
x∈Z2

n

∣∣∣cos πx1
n

∣∣∣ (γ(x, T−1
2 x)G(x)2 + γ(T−1

2 x,x)G(T−1
2 x)2

)
+
∣∣∣cos πx2

n

∣∣∣ (γ(x, T−1
1 x)G(x)2 + γ(T−1

1 x,x)G(T−1
1 x)2

)
≤
∑
x∈Z2

n

G(x)2
( ∣∣∣cos πx1

n

∣∣∣ (γ(x, T−1
2 x) + γ(x, T2x)

)
+
∣∣∣cos πx2

n

∣∣∣ (γ(x, T−1
1 x) + γ(x, T1x)

))
.

Hence, we just need to choose an appropriate function γ :
(
Z2
n

)2 → R so that for all x∣∣∣cos πx1
n

∣∣∣ (γ(x, T−1
2 x) + γ(x, T2x)

)
+
∣∣∣cos πx2

n

∣∣∣ (γ(x, T−1
1 x) + γ(x, T1x)

)
≤

√
5

2
. (8.3)

The idea behind the function γ is relatively simple, we will set some values of γ to be
α = 5

4 > 1 (and so the inverse values to be 4
5) and the rest to be 1. We will see that when x
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is far from the origin,
∣∣cos πxi

n

∣∣ is small enough that (8.3) will follow trivially from the fact that
γ ≤ 5

4 .

In order to define ‘close to the origin’ let us define the diamond
{
(x, y) : a(x) + a(y) < n

2

}
where a(x) = min{x, n − x}. Outside of the diamond, since

∣∣cos πz
n

∣∣ is decreasing with |z| for
|z| ≤ n

2 , we have that
∣∣cos πx1

n

∣∣ + ∣∣cos πx2
n

∣∣ is maximised on the boundary of the diamond. For
example, in the first quadrant where x1, x2 ≥ 0 we have on the boundary of the diamond that
x2 =

n
2 − x1 and so cos πx2

n = sin πx1
n . It follows that∣∣∣cos πx1

n

∣∣∣+ ∣∣∣cos πx2
n

∣∣∣ = cos
πx1
n

+ cos
πx2
n

= cos
πx1
n

+ sin
πx1
n

≤
√
2

and so the contribution to (8.3) from such a point is at most 25
4

√
2 = 5√

2
.

Inside the diamond we have to be a little more careful, since the cosines could be close to
one, we want to choose γ in such a way that it cannot be that all of

γ(x, T−1
2 x), γ(x, T2x), γ(x, T

−1
1 x) and γ(x, T1x)

are large. In particular, if we can bound their sum by 5√
2
for each x, then (8.3) will follows,

since | cosx| ≤ 1.

In order then to motivate the definition of our function then, it will be informative to consider
how the four points T1x, T

−1
1 x, T2x, T

−1
2 x can look for points inside the diamond.

We define a partial order < on the torus Z2
n, which in some way measures distance from the

origin, and set

γ(x,y) =


5
4 if x > y
4
5 if y > x

1 otherwise.

and we will do so in such a way that for every x ∈ Z2
n either

(a) Three of the four points T1x, T
−1
1 x, T2x, T

−1
2 x are > x and one is < x; or

(b) Two of the four points T1x, T
−1
1 x, T2x, T

−1
2 x are > x and two are incomarable.

Then in case (a) the LHS of (8.3) is at most 34
5 + 5

4 = 73
20 and in case (b) the LHS is at most

24
5 + 2 = 18

5 . An sharp reader will have noticed this is not quite as good as the claimed bound
5√
2
, however it is sufficient to bound the LHS away from 4, and a careful analysis of the same

essential strategy is enough to prove the stronger bound.

So, let us finally define this partial order:

x > y iff a(x1) ≥ a(y1) and a(x2) ≥ a(y2) and at least one of the inequalities is strict.

It remains to verify that property (a) or (b) hold, which can be reduced to a series of case
checks. Indeed, we are comparing (x1, x2) with

(x1 + 2x2, x2), (x1 − 2x2, x2), (x1, x2 + 2x1), (x1, x2 − 2x1)
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Let us first assume that a(x1) > a(x2) and so by symmetry we may assume that x1 > x2 ≥ 0
and x1 + x2 <

n
2 .

It follows that a(x1 − 2x2) < a(x1) and hence (x1 − 2x2, x2) < (x1, x2), however the other
three points are > x since

a(x1 + 2x2) > x1 and a(x2 ± 2x1) > x2.

For example either a(x1 + 2x2) = x1 + 2x2 ≥ x1 or a(x1 + 2x2) = n− x1 − 2x2 > n
2 − x2 > x1.

The other cases follow in a similar manner.

Finally if a(x1) = a(x2), and so again by symmetry we may assume that n
4 > x1 = x2 ≥ 0,

then a(x1 − 2x2) = a(x1) = a(x2) = a(x2 − 2x1) and so the points

(x1 − 2x2, x2) and (x1, x2 − 2x1)

are incomparable with x, whereas it is again an easy check to see that a(x1+2x2), a(x2+2x1) >
a(x1) = a(x2) and so

(x1 + 2x2, x2) and (x1, x2 + 2x1)

are > x.
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9 The zig-zag product

In this section we will introduce a new kind of graph product, the zig-zag product and show
that the zig-zag product of two expanders is still a quiet good expander, which will lead to an
iterative construction of an explicit family of expanders. We will also give a recent application of
the zig-zag product to complexity theory to show that Symmetric Logspace SL = L Logspace.
Logspace is the class of decision problems that can be solved using a deterministic Turing machine
using a logarithmic amount of writable memory space, whereas Symmetric Logspace, which was
originally described in terms of symmetric Turing machines (which is a bit more complex to
introduce), can be more easily described as the class of decision problems which are log-space
reducible to USTCON (undirected s-t-connectivity) which is the problem of determining whether
there exists a path between two vertices in a graph.

9.1 The zig-zag product

In a slightly non-standard definition, we define the kth power of a graph G = (V,E), written as
Gk, is the graph with vertex set V and where the number of edges between a pair of vertices in
V (Gk) is the number of walks of length k between those two vertices in G. Often, Gk is used
to denote instead the graph obtained by joining every two vertices in G at distance at most k.
The reason for this slightly uncovential definition is that it interacts nicely with our spectral
definitions, in particular it is easy to see that A(Gk) = A(G)k, and so if G is an (n, d, α)-graph,
then Gk is an (n, dk, αk)-graph.

The zig-zag product, which we write as z , is an asymmetric binary relation on graphs. The
zig-zag product of an (n,m)-graph and an (m, d)-graph is an (mn, d2)-graph. Our main aim will
be to show that the zig-zag product of two expanders is an expander. This is already true for
various other types of graph products, for example graph powers. The usefulness of the zigzag
product is that the degree of the product is a function only of the second graph, and so can be
controlled.

Explicitly, let G be an (n,m,α)-graph and let H be and (m, d, β)-graph. for each vertex
v ∈ V (G) we will fix some enumeration e1v, . . . , e

m
v of the edges incident with v, and we will

view the vertex set of H as [m]. The vertex set of G z H is given by the cartesian product
V (G)×V (H). It will be useful to think of this vetex set as being given by replacing each vertex
v ∈ G with a cloud of m vertices (v, 1), . . . , (v,m), one for each edge incident with v.

To describe the edges of G z H, it will be easier to first describe different product graph,
G r H the replacement product, which is also on V (G)× V (H). The edges of G r H are given
by the union of the original edges of G, where the edge eiv which is also ejw goes from (v, i) to
(w, j), together with a copy of H on each cloud. The edges of G z H now come from walks of
length three in G r H, which ‘zig-zag’ between the copies of H, in that they take one step inside
a copy of H, a second step between clouds, and then a third step inside a copy of H.

Formally, we have that a pair
(
(v, i), (w, j)

)
∈ E(G z H) if there are k, ℓ ∈ [m] such that

(i, k), (ℓ, j) ∈ E(H) and ekv = eℓw.

We note that the replacement product of graphs had been relatively well studied before, often
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used to blow up a graph into a sparses one, with lower degrees, whilst maintaining connectivity
properties. Before we analyse explicitly the expansion of the zigzag product, let us give a
heuristic explanation, in terms of the entropy of the random walk

9.2 Entropy analysis

Let us return to the perspective suggested earlier in the notes, which considers the stepwise
increase in entropy during a random walk. Our intuition should be that if G and H are good
expanders, then so is G z H, and so the entropy of the random walk on G z H should grow
significantly with each step. Why should this be the case?

Well, we can view each step in the random walk on G z H as being made up of a deterministic
step between two clouds, coming between two random steps within clouds. Note that the two
two random steps within the clouds are entirely independent of each other.

We can think about the distribution p as being composed of two marginal distributions pG
and pH , the projection of p onto V (G) or V (H). Now, if pH is far from uniform, then p must be
far from uniform on some clouds, and so in the first random step inside the cloud the entropy
of p will increase by virtue of H’s expansion. The other two steps will not harm this increase
(since entropy never decreases when multiplying by a stochastic matrix).

The more interesting case then is where within most clouds the p is close to uniform, although
the distribution is not uniformly spread between clouds. In this case the first random step cannot
increase the entropy, since the restrictions to each cloud will remain close to uniform. However,
if the distribution on most clouds is near uniform, then the (deterministic) middle step of the
random walk is like a random step on G, and so by the expansion of G the entropy of pG must
increase.

However, this middle step is simply a permutation on V (G z H), and so, whilst the entropy of
pG increases, the entropy of the whole distribution must remain unchanged, and so the entropy of
pH must decrease. In particular, pH is then far from uniform, and so there must be a significant
number of clouds on which the distribution is far from uniform, and so in the second random
step we are back in the first case, where we get an increase in the entropy of the distribution.

So, in other words, the key point here is that the middle step is simultaneously a permutation
(which doesn’t effect the entropy of p), but also an operation whose G-marginal is a random
step on G.

9.3 Expansion of the zigzag product

Theorem 9.1 (The Zig-Zag Theorem, Reingold-Vadhan-Widgerson). Let G be an (n,m,α)-
graph and let H be and (m, d, β)-graph. Then G z H is an (nm, d2, ϕ(α, β))-graph where ϕ
satisfies the following:

(1) If α < 1 and β < 1, then ϕ(α, β) < 1;
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(2) ϕ(α, β) ≤ α+ β;

(3) ϕ(α, β) ≤ 1− (1− β2)1−α
2 .

The first bound is just the qualitative statement that the zig-zag product of two expanders is
an expander. The two quantitative bounds (2) and (3) are crucial for applications. The first is
useful when α and β are small, and so their sum is still small, whereas the latter is useful when
α and β are large and the first is no longer effective.

We note that Theorem 9.1 (3) was previously known to hold for the replacement product,
although (2) need not. We also note that, if G can be m-coloured (and we take this colouring
as the ordering of the edges adjacent at each vertex in the definition of G z H), then G z H is
in fact a lift of H2.

Since the proof of Theorem 9.1 is reasonably involved we will just give proofs of a slighty
weaker bounds, which are still strong enough for the construction given in the next sections.

Proof of Theorem 9.1. We will prove (1) and a slightly weaker form of (2) in a similar fashion,
following the heuristic sketch we gave in the previous section. Explicitly we will show that

ϕ(α, β) ≤ α+ β + β2.

So, we will attempt to bound the spectral gap in G z H by considering the random walk on
G z H. Each step in this walk can be split into three parts

(i) A random step inside a cloud;

(ii) A deterministic step between clouds;

(iii) Another random step inside a cloud.

We see that we can write the transition matrix of this walk as follows: If we let B̂ = Â(H),
then the random steps in (i) and (iii) are done on n disjoint copies of H, and so the transition
matrices in these steps are B̃ = B̂×In (The Kroenecker product, giving a block diagonal matrix).
In the deterministic step (ii) we move from a vertex (v, k) to the unique vertex (w, ℓ) for which
ekv = eℓw. Consequently, the transition matrix in this step is given by the permutation matrix P
of an involution given by

P(v,k),(w,ℓ) =

{
1 if ekv = eℓw,

0 otherwise.

Hence we can write the transition matrix of the random walk on G z H as Z = B̂P B̂. Then,
as always, our claim is equivalent to bounding the Rayleigh quotient of vectors f ⊥ u with Z.

Our hope will be to prove this by decomposing the function f : V (G) × [m] → R in way
which reflects the product structure of G z H. Let us define a function h on V (G)× [m] which
is given by the average of f over each cloud. That is

h(v, i) =
1

m

∑
j∈[m]

f(v, j).
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We then define g = f−h, so that g sums up to zero on every cloud. Our proof will then in some
way formalise the intuition from the previous section. We are splitting the vector f up into a
part g which represents the deviation from the uniform of f on each cloud (and shrinks under
the random walk step in the clouds) and a part h which represents the probability of being in
each cloud, and hence the marginal distribution on V (G), and shrinks under the permutation
step.

Then we can expand

|fZfT | = |(g + h)B̃P B̃(g + h)T | ≤ |gB̃P B̃gT |+ 2|gB̃P B̃hT |+ |hB̃P B̃hT |.

Now, since B̂ is a block diagonal matrix, each block of which is B̂ and so has u as an eigenvector
with eigenvalue one, it follows that B̃h = h. Hence

|fZfT | ≤ |gB̃P B̃gT |+ 2|gB̃PhT |+ |hPhT | = |⟨gB̃P, gB̃⟩|+ 2|⟨gB̃,h⟩|+ |hPhT |.

We note that P is a permutation matrix, and so a contraction. Furthermore, since H is an
(m, d, β)-graph, ||vB̂||2 ≤ β||v||2 for any v ⊥ u and so, since g sums to zero on every cloud

||gB̃||2 ≤ β||g||2.

Hence, using Cauchy-Schwartz, it follows that

|fZfT | ≤ |⟨gB̃P, gB̃⟩|+ 2|⟨gB̃,h⟩|+ |hPhT |
≤ ||gB̃P ||2||gB̃||2 + ||gB̃||2||h||2 + |hPhT |
≤ ||gB̃||2||gB̃||2 + ||gB̃||2||h||2 + |hPhT |
≤ β2||g||22 + 2β||g||2||h||2 + |hPhT |.

Finally, for the last term, if we define the function w : V (G) → R by w(i) =
√
mh(v, i) then

we have that ||w||22 = ||h||22 and the definition of P leads to

hPhT = wÂwT ,

where Â = Â(G) is the transition matrix of the random walk on G. However, since f ⊥ u by
assumption, it follows that h ⊥ u and so w ⊥ u. In particular,

hPhT = wÂwT ≤ α||w||22 = α||h||22.

Hence we can conclude that

|fZfT | ≤ β2||g||22 + 2β||g||2||h||2 + α||h||22,

and since ||g||22, ||h||22 ≤ ||f ||22, it is immediate that

|fZfT | ≤ β2||g||22 + 2β||g||2||h||2 + α||h||22 (9.1)

≤ ||f ||22(α+ β + β2).

In fact, an even better bound can be given by noting that ⟨h, g⟩ = 0 and so ||f ||22 = ||g||22 +

||h||22, and so we’re really trying to minimise the quadratic form

(
α β
β β2

)
. However, this still
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isn’t sufficient to prove (2), for which we need to more carefully consider the relationship between
g and h.

We note that (9.1) is then sufficient to prove (1) when ||g|| is sufficiently small. Indeed, if
||g|||22 ≤ 1−α

3β ||f ||2 then

|fZfT | ≤ β2||g||22 + 2β||g||2||h||2 + α||h||22

≤ β2

(
1− α

3β

)2

||f ||22 + 2β
1− α

3β
||f ||2 + α||f ||22

≤ ||f ||22
(
α+

2

3
(1− α) +

1

9
(1− α)2

)
= ||f ||22

(7
9
+

α2

9
− 8

9
α
)

< ||f ||22
since α < 1.

On the other hand, if ||g|||2 is large, in that ||g|||22 > 1−α
3β ||f ||2, then we go back to the

observation that

fZfT = ⟨fB̃P B̃,f⟩ = ⟨(g + h)B̃P, (g + h)B̃⟩ = ⟨(gB̃ + h)P, gB̃ + h⟩

and use the fact that P is a contraction and ⟨gB̃,h⟩ = ⟨g,hB̃⟩ = ⟨g,h⟩ = 0 to see that

|fMfT | = |⟨(gB̃ + h)P, gB̃ + h⟩|
≤ ||gB̃ + h||22
= ||gB̃||22 + ||h||22
≤ β2||g||22 + ||f ||22 − ||g||22

≤ ||f ||22

(
1− (1− β2)

(
1− α

3β

)2
)

< ||f ||22.

Instead of (3) we will prove the slightly weaker bound

ϕ(α, β) ≤ 1− (1− α)(1− β)2.

In order to do so, rather than trying to bound Rayleigh quotient of an arbitrary vector f by
decomposing f in a sensible manner, we will instead try to bound the operator norm of Z by
decomposing Z in a sensible manner.

To do so, we will need the following useful lemma.

Lemma 9.2. Let Â be the transition matrix of an (n, d, λ)-graph and let J be a matrix with
every entry equal to 1

n . Then Â = (1− λ)J + λC where the operator norm ||C|| of C satisfies

sup
||v||2=1

||vC||2 := ||C|| ≤ 1.

Proof. Rearranging gives us that C = Â−(1−λ)J
λ . Let u be the uniform distribution, then u is

an eigenvector of both Â and J with eigenvalue 1, and hence also of C. Given any v ⊥ u, it
follows vÂ and vJ are also ⊥ u, and hence so is vC.
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Hence, it suffices to bound the norm of vC for all v ⊥ u. For this, we note that vJ = 0 and
||vÂ||2 ≤ λ||v||2 and so

||vC||2 =

∥∥∥∥∥vÂ− (1− λ)vJ

λ

∥∥∥∥∥
2

=

∥∥∥∥∥vÂλ
∥∥∥∥∥
2

≤ ||v||2.

We can think of the above lemma as saying that a step in the random walk given by Â can
be viewed as being a convex combination of a truly random step, together with a contraction.

So, returning to the analysis of the zig-zag product, recall that Z = B̃P B̃, where B̃ is
Kroenecker product of the transition matrix B̂ for H and In. By Lemma 9.2, since H is an
(m, d, β)-graph, we can write

B̂ = (1− β)J + βE

where J is the all 1
m matrix and E has operator norm at most one. It follows that

B̃ = (1− β)J̃ + βẼ

where the tildes correspond as before to Kroenecker products. It is easy to see that the operator
norm of Ẽ is still at most one.

Then we can expand as before

Z = B̃P B̃

= ((1− β)J̃ + βẼ)P ((1− β)J̃ + βẼ)

= (1− β)2J̃P J̃ + β2ẼP Ẽ + β(1− β)
(
J̃P Ẽ + ẼP J̃

)
:= (1− β)2J̃P J̃ + F

where we absorb the three last terms into F . We first claim that ||F || ≤ 2β − β2.

Indeed,

||F || =
∥∥∥β2ẼP Ẽ + β(1− β)

(
J̃P Ẽ + ẼP J̃

)∥∥∥ ≤ β2 + 2β(1− β) = 2β − β2,

where we used the fact that P as a permutation matrix, Ẽ by assumption and J by observation
have operator norm ≤ 1.

Finally we claim that J̃P J̃ = Â × J , where Â is the transition matrix of G. Indeed, if we
think about them both as transition matrices acting on V (G)× V (H). For the first, if we start
at some point (v, a) then we first choose a′ uniformly from V (H), then transition to the vertex
(w, b′) such that the edge labelled b′ at w is the edge labelled a′ at v, and then choose b uniformly
from V (H) and go to (w, b). The second corresponds to the following set of transitions - starting
at (v, a) we choose a random neighbour w of v in G, we choose b uniformly from V (H) and we
go to (w, b). However, by the definition of the replacement product, these two processes are the
same.

Hence we see that
Z = (1− β)2Â× J + (2β − β2)F
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However, the eigenvalues of X × Y are given by the products λiµj where λi and µj are
the eigenvalues of X and Y (with multiplicity). Since J has spectrum 1, 0, . . . it follows that
the λ(Â × J) = λ(Â) = α and hence, since all the matrices involved have u as their largest
eigenvector,

λ(Z) ≤ (1− β)2λ(Â) + (2β − β2)λ(F ) = (1− β)2α+ 2β − β2 = 1− (1− β)2(1− α).

9.4 Construction of an expander family using the zig-zag product

We start by taking some small expander H, which will be a (d4, d, 15)-graph for some constant d.
The existence of a such a graph is not hard to show using for example Theorem 7.5, and since
d is constant, algorithmically we can find the graph in constant time by a brute force search.

We then inductively define a sequence of graph Gn as follows

G1 = H2, Gn+1 = (Gn)
2 z H for n ≥ 1.

Proposition 9.3. Gn is a (d4n, d2, 12)-graph for all n.

Proof. For n = 1 this is clear since H2 is even a (d4, d2, 1
25)-graph. We proceed by induction.

Note that (Gn)
2 is a (d4n, d4)-graph andH is a (d4, d)-graph, and so (Gn)

2 z H is well-defined
and is a (d4n+1, d2)-graph. Furthermore, by Theorem 9.1 (2) (and in fact, even by the weaker
version we proved) (Gn)

2 z H is an (d4n+1, d2, γ)-graph, where

γ ≤
(
1

2

)2

+
1

5
+

1

25
=

1

2
.

We note however that this construction is only mildly explicit. However, by interleaving the
construction with a further graph product, tensoring Gn with itself, one can obtain a family
which grow much faster and which is then strongly explicit.

9.5 An application to complexity theory : SL = L

Roughly, without going into too much detail, we are interested in problems that can be solved
with low ‘space complexity’, without storing too much information. In particular, we are in-
terested in whether the problem USTCON of determining whether there is a path between two
given vertices s and t of a graph G can be solved in this manner.

One reason why this problem is interesting is that it can be shown that a large class of
problems, known as SL, have a log-space reduction (a reduction using only logarithmic space)
to USTCON. Hence, showing that USTCON can be solved in logarithmic space implies that
this ‘heirachy’ collapses, and all these problems can be solved in logarithmic space.
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There are many well-known and efficient algorithms in terms of their time-complexity for
determining graph connectivity, which run in linear time, such as DFS algorithms, but these
also can require linear space to run (for example maintaining a stack of vertices). In fact, an
old result of Savitch shows that there is a log2 space algorithm which solves this problem.

More recently an Aleluinas, Karp, Lipton, Lovász and Rackoff gave a probabilistic logspace
algorithm that solves USTCON. The algorithmic is particularly simple, we perform a random
walk on G of a polynomial length p starting at s, and see if it ever reaches t.

In fact, not only is the algorithm simple, but the analysis is also relatively simple. Indeed, the
algorithm clearly only uses logarithmic space - all we need to remember is the current position of
the walk, how far we’ve walked and the goal vertex t, which can all be encoded in logarithmically
many bits. Note also that this algorithm is still reasonably time efficient as well, running in
polynomial time,

So, we need to show that for an appropriate choice of p the probability that the random walk
doesn’t meet t is sufficiently small (in fact, vanishingly small). However, standard arguments
for random walks imply that in a connected graph G = (V,E), the expected time it takes a
random walk starting at a vertex s to hit any vertex t is at most 2|E||V | ≤ n3. In particular,
by Markov’s inequality, the probability that the random walk doesn’t hit t in the first 2n3 steps
is at most 1

2 . In particular, if we repeat this process n many times, resulting in a walk of length
p = O(n5), then by the Markov property the probability that we don’t hit t in each segment of
the walk is at most 1

2 independently, and hence the probability that we never hit t is at most
2−n.

Alternatively, one can analyse this algorithm by first replacing each vertex v in the graph with
a cycle of length d(v), to make the graph regular whilst preserving connectivity, and using the
easy to show fact that in any connected 3-regular graph the second largest eigengvalue satisfies

λ2 ≤ 3− Ω

(
1

ndiam(G)

)
≤ 3− Ω

(
1

n2

)
.

Our analysis of the random walk in G in Theorem 4.3 then implies that a random walk of length
O(n3) in G results in a distribution exponentially close to uniform, and hence visits each vertex
with reasonably large probability. Repeating such a walk polynomial many times will then end
up visiting each vertex whp.

A natural approach then is to try to derandomise this algorithm. In particular, the hope
would be to generate deterministically a walk which must explore all the vertices in a connected
graph. Various people tried to implement this idea without success, until Reingold came up
with an ingenious solution based on the zig-zag product.

As in the previous paragraph, we can assume that G is D-regular for some constant D (we
can even add self loops to raise this regularity if we wish). If it were the case that G were an
expander, then it would have a logarithmic diameter. Hence, since the degrees are bounded, we
could simply enumerate all of the logarithmically long paths starting at s and check if one of
them arrives at t. Since there are only polynomially many such paths, we can keep track of this
process in logarithmic space. Hence, for expander graphs, the logspace alogorithm is trivial.

However, it’s not clear how we can find a log-space reduction of the problem to the same
problem over a graph G which is a bounded degree expander. The idea is to use the zig-zag
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product to increase expansion, without increasing the vertex degree too dramatically.

As in the previous argument, we can assume that G is an (n,D, α)-graph where α ≤ 1 −
Ω
(

1
n2

)
, and let us suppose that D = d16 and that we have to hand a (d16, d, 12)-graph H. We

inductively construct a sequence of graphs Gi such that

G1 = G, and Gi+1 = (Gi z H)8.

Note that, as long as Gi is an (m, d16)-graph for some m, then Gi z H is an (md16, d2)-graph,
and so Gi+1 is an (md16, d16)-graph.

We terminate this sequence after k = O (log n) steps. Since, in each step the size of G
increases by some constant factor D = d16, it follows that Gk is an (nDk, D)-graph. We would
like to show

� Neighbourhood queries for Gk can be answered in logarithmic space;

� Gk is an (nDk, D, γ)-graph for some constant γ < 1.

The first claim is not at all obvious, since we’re only working in logarithmic space, we can’t
keep track of each graph Gi, and so we have to evaluate the whole recursion ‘locally’ for each
query. But, it turns out that each of the steps can be performed with only an additional constant
amount of space. The proof of this however involves the construction of a clever data structure
which we will not go into.

To prove the second claim, we use Theorem 9.1 (3)

ϕ(α, β) ≤ 1− (1− β2)
1− α

2
.

To begin with we have that G1 has an expansion ratio α ≤ 1 − Ω
(

1
n2

)
, and we will see that

this roughly squares in each iteration, and hence reaches a constant after logarithmically many
iterations.

If we write λi and µi for the normalised generalised second eigenvalue of Gi and Gi z H,
respectively. Then, Theorem 9.1 (3) gives

µi ≤ 1−
(
1− 1

4

)
1− λi

2
= 1− 3(1− λi)

8
,

and so

λi+1 = µ8
i ≤

(
1− 3(1− λi)

8

)8

.

If λi ≤ 1
2 , then λi+1 ≤

(
13
16

)8
< 1

2 , whereas if x ∈
[
1
2 , 1
]
then it can be checked that(

1− 3(1− x)

8

)4

≤ x,

and so λi+1 ≤ max
{
1
2 , λ

2
i

}
. Hence

λk ≤ max

{
1

2
,

(
1− Ω

(
1

n2

))2k
}

≤ max

{
1

2
, exp

(
−Ω

(
2k

n2

))}
≤ 1

2

If k = O(log n) for a large enough leading constant.
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10 Lossless conductors and expanders

In the course we have mostly focused on edge-expansion, and in particular the Cheeger constant
h(G) and the edge isoperimetric parameter

ΦE(G, k) = min{∂E(S) : S ⊆ V, |S| = k}.

In general it seems harder to control the vertex isoperimetric parameter

ΦV (G, k) = min{∂V (S) : S ⊆ V, |S| = k}.

We saw earlier that in ‘most’ (n, d)-graphs linear size sets expand almost optimally, and so for
any δ, ΦV (G, ϵn) ≥ d− 2− δ for sufficiently small ϵ. However our constructions of ‘good’ edge-
expanders, or at least those with optimal spectral expansion, i.e. the Ramanujan graphs, do not
lead to such optimal vertex expansion.

Indeed, we showed on the example sheet that an (n, d, α)-graph satisfies

Φ′
V (G, ρn) = min

S⊆V

|Γ(S)|
|S|

≥ 1

ρ(1− α2) + α2

and since, by Theorem 6.2, α = λ2
d ≥ 2+od(1)√

d
, it follows that for Ramanujan graphs we get the

following bound

Φ′
V (G, ρn) ≥ (1 + oρ,d(1))

d

4
.

In fact, Kahale gave a better bound which improves this bound for Ramanujan graphs to

Φ′
V (G, ρn) ≥ (1 + oρ,d(1))

d

2
,

and gave some constructions, which make small local adaptations to a Ramanujan graph which
reduce the vertex expansion without significantly increasing λ2, to show that this is in fact tight.
In particular, even with our constructions of optimal edge-expanders, we are not guaranteed to
get a better lower bound on ΦV (G, ϵn) than around d

2 .

However, it turns out that in a variety of applications it would be useful to have (n, d)-graphs
which are ‘good’ vertex expanders, in the sense that small sets expand by a factor of γd for some
γ > 1

2 , for example in the construction of expander based linear codes.

It is still a major open problem to construct such families of graphs, but in this section we
will present a construction that takes a step in this direction, building at least bipartite graphs
where the ‘left hand side’ has good expansion, that is, for any δ > 0 we can construct a family
of bipartite graphs which are d-left-regular and such that every subset of the left hand side of
small linear size expands by a factor of (1− δ)d.

As part of this we will introduce a variety of useful and interesting notions coming from the
area of randomness enhancing objects such as conductors and extractors.

10.1 Conductors and lossless expanders

A key idea in this section will be to consider the notion of entropy introduced earlier in the course.
Previously we saw how the random walk on a graph G in some sense ‘tranforms’ distributions
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on V (G) and considered the effect this has on the entropy of the distributions. In this section
we will be considering a bipartite analogue of this - given a bipartite graph G = (L,R,E) and
a distribution p on L, a single step in the random walk on G will transform p to a distribution
q on R. In particular we will be interested in bounding the entropy of q from below in terms of
the entropy of p, and in which graphs can we do so effectively.

Recall the notion of min-entropy

H∞(p) = − log(||p||∞)

we defined earlier in the course, which we can think of as a measure of distance from p to a
uniform distribution. Note that if p is a distribution on {0, 1}n then 0 ≤ H∞(p) ≤ log n. We
define a k-source to be a distribution with min-entropy at least k.

Bounding the min-entropy from below if quite a strong condition on p, H∞(p) ≥ k if and
only if no point in the space has probability more than 2−k (whereas if we have a similar bound
on the Shannon entropy then it is only true that this holds ‘on average’). So, it will be useful
to weaken the notion of having large min-entropy to that of being ‘close’ (in total variational
distance) to a distribution with high min-entropy. To this end we say a distribution p is a
(k, ϵ)-source if there is some k-source q such that ||p − q||1 ≤ 2ϵ, in which case we say that p
and q are ϵ-close.

As is standard in the area, and to facilitate our analysis of the entropy, we will use bit-
strings to label the vertices and edges of the graph G. For ease of notation we will assume that
|L| = N = 2n, |R| = M = 2m and that each vertex in L has degree D = 2d. Then we can view
a graph G = (L,R,E) as a function

E : {0, 1}n × {0, 1}d → {0, 1}m

where the vertex x ∈ L is connected to the D = 2d vertices E(x, ·) ∈ R.

We say that a D-left-regular graph G = (L,R,E) is a (Kmax, ϵ)-lossless expander if every
set S ⊂ L of size |S| = K ≤ Kmax has at least (1 − ϵ)DK neighbours in R. In other words,
sufficiently small vertex sets on the left have almost the maximal possible vertex expansion.
Since G is D-left-regular, an alternative view is that most of the neighbours of the set S have a
unique neighbour in S. Naturally we must have that Kmax is somewhat smaller than M

D .

From the point of view of the graph as a function we see that the following is a stronger
condition: A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (kmax, ϵ)-lossless conductor if for any
k ≤ kmax and any k-source p over {0, 1}n, the distribution E(p,ud) is a (k+ d, ϵ)-source, where
ud is the uniform distribution over {0, 1}d. Indeed, it is simple to show that if G is a graph
such that the function E is a (kmax, ϵ)-lossless conductor then G is a (Kmax, ϵ)-lossless expander,
where Kmax = 2kmax .

If we view the process described above as taking some distribution p and ‘injecting’ some
randomness into it via the choice of a random edge in {0, 1}d, then the idea behind a lossless
conductor is that none of the additional entropy added in this step should be lost, up to a small
ℓ1 pertubation.

Hence the existence of the required expanders will be guaranteed by the following theorem.

Theorem 10.1. For any ϵ > 0 and m ≤ n there exists an explicit family of
(
m− d− log

(
1
ϵ

)
−O(1), ϵ

)
-

lossless conductors, where d = O
(
n−m+ log

(
1
ϵ

))
.
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Leading to the following corollary.

Corollary 10.2. For any ϵ > 0 and M ≤ N there exists an explicit family of D-left-regular
bipartite graphs that are

(
Ω
(
ϵM
D

)
, ϵ
)
-lossless expanders, where D ≤

(
N
ϵM

)c
for some constant c.

Note that, in the (useful) case where M
N and ϵ are bounded below by a constant, the degree

D will also be constant.

In order to prove Theorem 10.1 we will need to introduce a number of randomness enhancing
objects. The first is a slight generalisation of a lossless conductor.

A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (kmax, a, ϵ)-conductor if for any k ≤ kmax and
any k-source p over {0, 1}n, the distribution E(p,ud) is a (k + a, ϵ)-source. The idea here is
that the conductor will ‘conduct’ at least a bits of entropy from the d random bits coming from
ud, as long as the the entropy of the input p is not too large.

Obviously the above cannot hold when kmax is too large in terms of m, since the output can
be at most an m-source. In the optimal case we say a function E : {0, 1}n × {0, 1}d → {0, 1}m
is an (a, ϵ)-extracting conductor if it is an (m− a, a, ϵ)-conductor. The interesting thing here is
that not only does this function ‘conduct’ a bits of entropy from ud, but once the entropy of
the input p gets large enough we find that the output has to be ϵ-close to uniform! Functions
with this second property are known in the literature as extractors, the idea being that they
can ‘extract’ a uniformly random output from a weakly random source p together with a small
random seed ud.

We say a pair of functions ⟨E,C⟩ : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}b is an (kmax, a, ϵ)-
buffer conductor if E : {0, 1}n × {0, 1}d → {0, 1}m is an (a, ϵ)-extracting conductor and ⟨E,C⟩
is a (kmax, ϵ)-lossless conductor. The idea here is to ensure that none of the added entropy from
ud is lost - whatever entropy is not gained in the first function can be saved completely by the
second, which we view as an overflow buffer or bucket.

Finally, a pair of functions ⟨E,C⟩ : {0, 1}n ×{0, 1}d → {0, 1}m ×{0, 1}b where n+ d = m+ b
is an (kmax, a, ϵ)-permutation conductor if E : {0, 1}n × {0, 1}d → {0, 1}m is an (kmax, a, ϵ)-
extracting conductor and ⟨E,C⟩ is a permutation of {0, 1}n+d (i.e., it is a bijection). We note
that this is in fact a special case of a buffer conductor, where the fact that ⟨E,C⟩ is a (kmax, ϵ)-
lossless conductor follows since ⟨E,C⟩ is a permutation.

10.2 The construction

10.3 The zig-zag product for bipartite graphs

We will construct our family of lossless expanders using a generalisation of the zig-zag product
for conductors. However, in order to define this product it will be instructive to adapt slightly
the zig-zag product to bipartite graphs.

Let H be a d-regular bipartite graph with s vertices in its two partition classes LH and RH

and let G be an s-regular bipartite graph with n vertices in its two partition classes LG and RG.
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The zig-zag product G z H (in a slight abuse of notation) is a d2 regular bipartite graph with
sn vertices in each partition class, which are given by LG × LH and RG × RH . Whilst these
are not vertices in our graph, it will be useful to imagine the vertex set as being a subset of
LG × V (H) ∪RG × V (H), that is a copy of H for each vertex of G.

The edges emanating from a vertex (x, y) ∈ LG × LH in the left partition class are labelled
by pairs in [d]× [d] in the following way: We imagine that the edges emanating from each vertex
in G and H have been labelled by [s] and [d] (independently for both endpoints). The other
endpoint (u, v) of the edge labelled (a, b) at (x, y) is determined as follows:

� Let v′′ be the neighbour of y in H labelled a. We think of this as taking a left to right
step in the ‘local copy of H’;

� We let u be the neighbour of x labelled v′′ in G and let v′ be the label of the edge to x
from u. We think of this as taking a left right step along an edge of G between the copies
of H;

� Finally let v be the neighbour of v′ in H labelled b. Again we think of this as taking a left
to right step in the ‘local copy of H’.

It is perhaps reasonable to hope that, as in the previous section, if G and H are good edge-
expanders, then also G z H will be. Furthermore, as before the degree of G z H is controlled
solely by the degrees in H, making this perhaps a good construction to use for building bounded
degree expanders. However, whilst the degree of G z H is d2, it is easy to see that its vertex
expansion cannot exceed d, by considering the neighbourhood of a single copy of H on the left.

In order to explain how we might hope to improve this, ignoring for now the question of
bipartiteness, let us first note that we can view a single step in a random walk on an expander
graph as a type of permutation conductor. Indeed, suppose that G is an (N,M,α)-graph, where
N = 2n and M = 2m and we have some arbitrary labelling over {0, 1}m of the edges at each
vertex. Then a step in a random walk in G, starting at a vertex x, chooses some uniform label
e ∈ {0, 1}m and moves to the other endpoint of the edge labelled e at x.

Another way to think about this is as the function ⟨E,C⟩ : {0, 1}n × {0, 1}m → {0, 1}n ×
{0, 1}m which takes a pair (x, e) to the pair (x′, e′) where x′ is the other endpoint of the edge
labelled e and e′ is the label of this edge at x′. This is sometimes called the rotation map of G.
In this way if we have a distribution p on the vertices of G, u is the unifrom distribution on
{0, 1}m and E(p,u) = (q, r), then q is the distribution on V (G) after one step in the random
walk.

It is clear that this map is a permutation, however the expansion of the underlying graph
guarantees that E is a conductor, which can be shown using the equivalence between min-entropy
and Rényi entropy

A bit of thought shows that, if we have an (N,M)-graph G and an (M,D)-graph H, where
D = 2d, we can view a single step in the random walk on the zig-zag product G z H as coming
from a combination of three permutation conductors, two arise from the rotation map ⟨EH , CH⟩
of H and one from the rotation map ⟨EG, CG⟩ G.

Indeed, if we start with some vertex (v, a) ∈ V (G) × V (H) = V (G z H) then the random
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walk first chooses uniformly some e ∈ {0, 1}d and considers the endpoints a′ of the edge labelled
e at a in H, it then considers the endpoint w of the edge labelled a′ at v in G, and the label a′′ of
this same edge at w. It finally chooses uniformly some e;∈ {0, 1}d and considers the endpoints
b of the edge labelled e′ at a′′ in H, and moves to the vertex (w, b).

So, if we start with some distribution (x1,x2) on V (G) × V (H) then the distribution after
one step in the random walk can be caluclated as follows: Let r1 and r2 be uniformly distributed
on {0, 1}d

� We let (y2, z2) = ⟨EH , CH⟩(x2, r1);

� We let (y1, z1) = ⟨EG, CG⟩(x1,y2);

� We let (y3, z3) = ⟨EH , CH⟩(z1, r2);

and the final distribution is given by (y1,y2). Here we can see that, even though each of the
permutation conductors are ‘lossless’, some of the outputs, namely z2 and z3 are not used,
and so some of the entropy inputted by the random seeds r1 and r2 might not be ‘conducted’
through to the output (y1,y2).

Indeed, when we start with a distribution x2 which is uniform on H, then the first random
step cannot conduct any extra entropy to y2, and so all of this injected randomness is lost in
z2.

Broadly the idea will be to try to ‘save’ this randomness for later by using the fact that the
permutation conductor is a buffer conductor, and to avoid losing the extra randomness in z2, z3
by replacing our second step in H with a lossless conductor. This idea will be formalised in the
notion of a zig-zag product for conductors.

10.4 The zig-zag product for conductors

The zig-zag product for conductors will have to be carried out with quite carefully chosen
parameters in order to give the desired constant degree lossless expanders that we wish for in
Corollary 10.2. Explicitly one can show using probabilistic methods the existence of the following
objects.

Lemma 10.3.

1. A (k, ϵ)-lossless conductor E : {0, 1}n × {0, 1}d → {0, 1}m exists for all m > k+ d+ log 1
ϵ .

2. An (a, ϵ)-extracting conductor E : {0, 1}n×{0, 1}d → {0, 1}m exists for all d > a+2 log 1
ϵ .

3. An (n, a, ϵ)-buffer conductor E : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}b exists for all d >
a+ 2 log 1

ϵ and m+ b > n+ d+ log 1
ϵ .

Further, it can be checked that the rotation map of a large expanding graph leads to a
permutation conductor. Very roughly, suppose we have an (N,D,α)-graph, where N = 2n and
D = 2d then the rotation map will give an (n−O(a), a, ϵ)-extractor where d = O

(
a+ log 1

ϵ

)
.
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Our construction then uses three parts ⟨E1, C1⟩, ⟨E2, C2⟩ and E3 (which in some sense take
the role of the three different steps in the zig-zag product).

a) An (k1, a1, ϵ)-permutation conductor ⟨E1, C1⟩ : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 × {0, 1}b1 ;

b) An (n2, a2, ϵ)-buffer conductor ⟨E2, C2⟩ : {0, 1}n2 × {0, 1}d2 → {0, 1}d1 × {0, 1}b2 ;

c) An (k2, ϵ)-lossless conductor E3 : {0, 1}b1+b2 × {0, 1}d3 → {0, 1}m3 .

By combining them in an appropriate manner, we will produce a conductor E : {0, 1}n×{0, 1}d →
{0, 1}m where n = n1 + n2, d = d2 + d3 and m = m1 +m3.

How do we compute the output of E? Well, given a pair (x, r) ∈ {0, 1}n ×{0, 1}d let us split
x into x1 and x2 of length n1 and n2 and r into r2 and r3 of length d2 and d3. Then the output
E(x1x2, r2r3) is given by y1y3 which we compute in three steps:

i) We first compute ⟨E2, C2⟩(x2, r2) = (y2, z2);

ii) Next we compute ⟨E1, C1⟩(x1, y2) = (y1, z1);

iii) Finally we compute y3 = E3(z1z2, r3).

Let us illustrate why we might hope this to work via an informal ‘bookkeeping’ of the entropy
involved. Suppose that our input X = (X1, X2) is a k-source, for some k ≤ n1.

Since ⟨E1, C1⟩ and ⟨E2, C2⟩ are both ‘lossless’, the triple (Y1, Z1, Z2) will contain the original
k bits of entropy, as well as the extra bits from the input of R2. The next condition is non-trivial,
we need Y1 to contain sufficient entropy that the conditional entropy left in the buffers (Z1, Z2)
is small, so that the lossless conductor E3 is able to conduct all of the entropy from (Z1, Z2, R3)
into Y3.

It will turn out, perhaps rather magically, that we can split into two cases, we may either
assume that for every x1 ∈ supp(X1) the confiditional entropy of (X2|X1 = x1) is small, or for
every x1 ∈ supp(X1) the confiditional entropy of (X2|X1 = x1) is large.

In the first case, ⟨E2, C2⟩ will conduct the entropy of X2 into Y2, and so Z1 cannot have very
large entropy (at most the bits from R2). Also, if we choose b2 to be small than Z2 cannot have
very large entropy. However, since as mentioned (Y1, Z1, Z2) has large entropy, it follows that
Y1 has large entropy.

In the second case, ⟨E2, C2⟩ extracts an almost uniform Y2 and so ⟨E1, C1⟩ either conducts
some extra entropy into Y1, or the entropy of X1 is already so large that this isn’t possible. If we
choose n2 small enough that the entropy of X1 is already reasonably large, then in both cases
Y1 will have high entropy.

Hence, the entropy in the buffers (Z1, Z2) will be small enough that we can use E3 to losslessly
conduct all the entropy from (Z1, Z2, R3) into Y3.

However the above analysis contains lots of delicate interdependencies in terms of the choices
of our parameters. To avoid keeping track of all these dependencies, let us ‘skip to the end’
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and make a single, prescient, choice for our parameters, which we will show are suitable for the
above construction. To that end, let a = 1000 log 1

ϵ and d = 2a, and assume that

a) ⟨E1, C1⟩ : {0, 1}n−20a×{0, 1}14a → {0, 1}n−20a×{0, 1}14a is an (n−30a, 6a, ϵ)-permutation
conductor;

b) ⟨E2, C2⟩ : {0, 1}20a × {0, 1}a → {0, 1}14a × {0, 1}21a is a (20a, 0, ϵ)-buffer conductor;

c) E3 : {0, 1}35a × {0, 1}a → {0, 1}19a is a (17a, ϵ)-lossless conductor,

where we see that these fall within the achievable ranges from Lemma 10.3.

We aim to show that the resulting conductor, after applying the zig-zag product to the above
building blocks, E : {0, 1}n × {0, 1}2a → {0, 1}n−a is an (n − 10a, 4ϵ)-lossless conductor. This
would be sufficient to prove Theorem 10.1 for arbitrarily large n and for a specific choice of m.

10.5 Proof of Theorem 10.1

So, we want to track the change in entropy from the input (X1, X2) to the output E(X1, X2) =
(Y1, Y3). We need to show that if H∞(X1, X2) = k ≤ n − 10a then (Y1, Y2) is a (k + 2a, 4ϵ)-
source. For ease of discussion we will simply ignore all the small ℓ1-errors in the outputs of our
conductors (essentially assuming for simplicity that ϵ = 0). What would happen if we kept track
carefully is that these errors would accumulate additively in the end to give the final error for
the conductor E. Under this simplification we wish to show that H∞(Y1, Y2) ≥ k + 2a.

To this end, let us note a basic property of min-entropy (and in particular, joint min-entropy)
that will be useful for us.

Let X and Y be random variables, then for any z ∈ supp(X) it is clear that

H∞(X,Y ) = − logmax
x,y

P(X = x, Y = y) ≤ − logmax
y

P(Y = y|X = z)P(X = z)

= H∞(Y |X = z)− logP(X = z). (10.1)

As a corollary we get the following

Lemma 10.4. Suppose that H∞(X,Y ) ≥ a and H∞(Y |X = z) ≤ b for all z ∈ supp(X), then
H∞(X) ≥ a− b.

We will also need a small technical lemma, which allows us to partition a joint distribution
according to conditional min-entropy.

Lemma 10.5. Let (X1, X2) be a probability distribution on a finite product space. Given 0 <
ϵ ≤ 1

2 and a, there exists a probability distribution (Y1, Y2) on the same space such that:

� The distributions (X1, X2) and (Y1, Y2) are ϵ-close;

� The distribution (Y1, Y2) is a convex combination of two other distributions (Ŷ1, Ŷ2) and
(Y̌1, Y̌2), each having min-entropy at least H∞(X1, X2)− log

(
1
ϵ

)
;
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� For all x ∈ supp(Ŷ1) we have H∞(Ŷ2|Ŷ1 = x) ≥ a;

� For all x ∈ supp(Y̌1) we have H∞(Y̌2|Y̌1 = x) < a;

Proof. We first split supp(X1) according to H∞(X2|X1 = x) so that

Ŝ = {x : H∞(X2|X1 = x) ≥ a} and Š = {x : H∞(X2|X1 = x) < a}.

We then define (Ŷ1, Ŷ2) and (Y̌1, Y̌2) so that Ŷ1 and Y̌1 have disjoint supports Ŝ and Š respectively,
according to the following:

P
(
(Ŷ1, Ŷ2) = (x1, x2)

)
= P

(
(X1, X2) = (x1, x2)|X1 ∈ Ŝ

)
;

P
(
(Y̌1, Y̌2) = (x1, x2)

)
= P

(
(X1, X2) = (x1, x2)|X1 ∈ Š

)
.

Let p = P(X1 ∈ Ŝ). Then we see that (X1, X2) = p(Ŷ1, Ŷ2) + (1 − p)(Y̌1, Y̌2), where (Ŷ1, Ŷ2)
and (Y̌1, Y̌2) have disjoint supports. In particular,

H∞(Ŷ1, Ŷ2) ≥ H∞(X1, X2)− log
1

p
and H∞(Y̌1, Y̌2) ≥ H∞(X1, X2)− log

1

1− p
.

Hence if p, 1− p ≥ ϵ then we can take (Y1, Y2) = (X1, X2).

On the other hand, if p < ϵ then, since ϵ < 1
2 , we have that 1− p ≥ ϵ, and hence (Y̌1, Y̌2) is a

suitable choice for (Y1, Y2), as long as we can show that it is ϵ-close to (X1, X2). However this
is straighforward since∑

x1∈Ŝ,x2

∣∣∣P((X1, X2) = (x1, x2)
)
− P

(
(Y̌1, Y̌2) = (x1, x2)

)∣∣∣ = P(X1 ∈ Ŝ) = p < ϵ

and ∑
x1∈Š,x2

∣∣∣P((Y̌1, Y̌2) = (x1, x2)
)
− P

(
(X1, X2) = (x1, x2)

)∣∣∣ = ( 1

1− p
− 1

)
(1− p) = p < ϵ.

The case p > 1− ϵ is similar.

Firstly we note that, since ⟨E2, C2⟩ is a (20a, 0, ϵ)-buffer conductor and ⟨E1, C1⟩ is a permu-
tation conductor, no entropy is lost when we apply ⟨E2, C2⟩ and ⟨E1, C1⟩. In particular we have
(ignoring the ℓ1 errors) that

k + a = H∞(X1, X2, R2) = H∞(X1, Y2, Z2) = H∞(Y1, Z1, Z2).

We note that at this point, all we need to show is that Y1 has a large enough entropy. Indeed,
suppose we can show that

H∞(Y1) ≥ k − 15a. (10.2)

Since E3 is a (17a, ϵ)-lossless conductor, we have that for any y1 ∈ supp(Y1)

H∞(Y3|Y1 = y1) ≥ min {H∞(Z1, Z2|Y1 = y1) + a, 17a} := h.
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In other words, for all y3 ∈ supp(Y3) and y1 ∈ supp(Y1), P(Y3 = y3|Y1 = y1) ≤ 2−h and so
P(Y3 = y3, Y1 = y1) ≤ 2−hP(Y1 = y1).

If h = 17a then, since H∞(Y1) ≥ k − 15a, P(Y1 = y1) ≤ 2−k+15a, and it follows that

P(Y3 = y3, Y1 = y1) ≤ 2−k−2a

and hence H∞(Y1, Y3) ≥ k + 2a.

Conversely, if h = H∞(Z1, Z2|Y1 = y1) + a then

P(Y3 = y3, Y1 = y1) ≤ 2−hP(Y1 = y1)

= 2−a2−H∞(Z1,Z2|Y1=y1)P(Y1 = y1)

= 2−amax
z1,z2

P(Z1 = z1, Z2 = z2|Y1 = y1)P(Y1 = y1)

= 2−amax
z1,z2

P(Z1 = z1, Z2 = z2, Y1 = y1)

= 2−a2−H∞(Y1,Z1,Z2)

= 2−a2−k−a,

and so H∞(Y1, Y3) ≥ k + 2a as before.

So, we wish to prove (10.2). By Lemma 10.5 we can assume we are in one of the following
two cases:

Case 1: H∞(X1, X2) ≥ k−log 1
ϵ ≥ k−a and for all x1 ∈ supp(X1), H∞(X2|X1 = x1) ≥ 14a.

In this case, since trivially H∞(X2|X1 = x1) ≤ 20a for all x1 ∈ supp(X1), by Lemma 10.4

H∞(X1) ≥ H∞(X1, X2)− 20a ≥ k − 21a.

Furthermore, since ⟨E2, C2⟩ is a (20a, 0, ϵ)-buffer conductor, conditioned on the value of X1

the output (Y2, Z2) is such that Y2 is ϵ-close to uniform, and so the joint distribution (X1, Y2)
is ϵ-close to an independent pair (X1, U14a). Hence, since E1 is a (n − 30a, 6a, ϵ)-extracting
conductor, H∞(X1) ≥ k − 21a and k − 21a ≤ n− 31a, it follows that

H∞(Y1) ≥ k − 21a+ 6a = k − 15a.

Case 2: H∞(X1, X2) ≥ k−log 1
ϵ ≥ k−a and for all x1 ∈ supp(X1), H∞(X2|X1 = x1) < 14a.

First we note that, since H∞(X1, X2) ≥ k − a, by (10.1) we have that for all x1 ∈ supp(X1)

H∞(X2|X1 = x1)− logP(X1 = x1) ≥ H∞(X1, X2) ≥ k − a.

Now, since ⟨E2, C2⟩ is a (20a, 0, ϵ)-buffer conductor and H∞(X2|X1 = x1) < 14a

H∞(Y2|X1 = x1) ≥ H∞(X2|X1 = x1).
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It follows that

H∞(X1, Y2) = min
x1

{H∞(Y2|X1 = x1)− logP(X1 = x1)}

≥ min
x1

{H∞(X2|X1 = x1)− logP(X1 = x1)}

= H∞(X1, X2) ≥ k − a.

Then, since ⟨E1, C1⟩ is a permutation, H∞(Y1, Z1) ≥ k − a. However, trivially H∞(Z1|Y1 =
y1) ≤ 14a for every y1 (since Z1 takes values in {0, 1}14a) and so, by Lemma 10.4

H∞(Y1) ≥ k − 15a.

Hence (10.2) holds, and the proof is completed.

To end this section, we note that there is no known way to algebraically construct lossless
expanders, and indeed it seems that the strong vertex expansion that such graphs posses are not
implied by simple algebraic properties of graphs. Furthermore, our construction only provides
explicit examples of bipartite graphs which expand in a single direction. Relaxing either of these
conditions is an interesting open problem.

Question 10.6. For any δ > 0 and sufficiently large d, give an explicit construction of an
arbitrarily large (n, d)-graph G with ΦV (G, ϵn) ≥ d− 2− δ where ϵ = ϵ(δ, d).
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11 Metric Embeddings

Finite metric spaces arise in many different context. For example, much of modern science deals
with large data sets, which often come with or can be naturally equipped with, some distance
metric. Another example comes from graphs, where a natural family of metric spaces arises
from the graph metric by assigning some set of edge lengths to a graph, allowing one to treat
the graph as a geometric object. In these ways and more, we can treat finite metric spaces from
a geometric perspective, but also from a combinatorial and computational perspective.

The topic we’ll consider in this chapter is the question of embedding a metric space X into
another Y . We might not always be able to so in a way that preserves the metric structure of X
precisely, but only approximately in some sense. However, if the structure of Y is much simpler
then it can be useful to view X as being structurally similar to a subspace of Y . Perhaps the
simplest examples, geometrically, of metric spaces are the euclidean spaces Rd, and the question
we’ll be considering is how much do we need to change the structure of a finite metric space to
embed it in Euclidean space. It will turn out that, perhaps unexpectedly, expander graphs arise
naturally in this context as extremal examples - they require the most distortion over all spaces
with the same number of points to be able to be embedded in Euclidean space.

11.1 Embedding metric spaces into Euclidean space

Let us introduce then formally the notions we’ll be working with. A semimetric space is a
pair (X, d), where X is a set of points and d is a distance function d : X × X → R+ which is
symmetric, non-negative and satisfies the triangle inequality

d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X.

(X, d) is then a metric space if d(x, y) = 0 if and only if x = y.

Suppose we have an embedding f : X → Rn of the space (X, d) into the metric space
(Rn, || · ||2), n-dimensional Euclidean space with the ℓ2 distance. We define

expansion(f) = max
x1,x2∈X

||f(x1)− f(x2)||2
d(x1, x2)

,

contraction(f) = max
x1,x2∈X

d(x1, x2)

||f(x1)− f(x2)||2
,

distortion(f) = expansion(f) · contraction(f).

Note that these definitions ensure the the distortion of f is unchanged when scaling f by a linear
factor.

It is not hard to see that there are some metric spaces which cannot be embedded into
Euclidean space without distortion, regardless of the dimension of the target space. Indeed,
consider the metric of the star graph K1,3 with center 4 and leaves 1, 2, 3. We see that d(4, 1) =
d(4, 2) = d(4, 3) = 1 and d(x, y) = 2 otherwise. In particular, by the fact that the triangle
equality is strict in Rn except for colinear triples, it follows that each triple containing 4 lies on
a single line, and so all four points must lie on a single line. However, this clearly leads to a
contradiction.
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11.2 Minimising the ℓ2 distortion

Given a finite metric space (X, d) let us write c2(X, d) for the least possible distortion in any
embedding of (X, d) into (Rn, || · ||2). Note that the minimum distortion can clearly be achieved
in R|X|.

A well-known result of Bourgain shows that arbitrary metric spaces can be embedded into
Euclidean space with only logarithmic distortion.

Theorem 11.1. [Bourgain] Any n-point metric space (X,D) can be embedded into Euclidean
space with distortion O(log n).

Another interesting and powerful result shows that subspaces of Euclidean spaces can be
embedded into a space of much smaller dimension without signifcant loss in distortion. We say
a metric space (X, d) is an ℓ2-metric if there is a distance preserving embedding f : X → Rn.

Theorem 11.2 (Johnson-Lindenstrauss). For any ϵ > 0 and any n-point ℓ2-metric (X, d) there

exists an embedding f : X → Rm of distortion ≤ 1 + ϵ where m = O
(
logn
ϵ2

)
.

In fact, the proof of the above theorem is remarkably simple, one takes a random linear
projection to a low dimensional subspace and the result follows from standard concentration
results. By combining the two theoroms we see that for arbitrary spaces, logarithmic distortion
can be achieved even in dimension O

(
(log n)2

)
.

It turns out that there is in fact an efficient (polynomial time) algorithm which computes
c2(X, d), using semi-definite duality, which gives us a simple way to prove lower bounds on
c2(X, d). Let us show that we can reduce the problem of computing c2(X, d) to a semi-definite
optimisation problem.

Theorem 11.3 (Linial-London-Rabinovich). There is a polynomial time algorithm that, given
a metrix space (X, d), computes c2(X, d).

Proof. Let X = {x1, . . . , xn} and suppose we have some embedding f : X → Rn. Since we can
always scale f so that contraction(f) = 1, we may assume that distortion(f) ≤ γ if and only if

d(xi, xj)
2 ≤ ||f(xi)− f(xj)||22 ≤ γ2d(xi, xj)

2 for all1 ≤ i < j ≤ n. (11.1)

Recall that a symmetric n× n matrix Z is said to be positive semi-definite if vZvT ≥ 0 for all
v ∈ Rn. It can be seen that this is equivalent to the following two conditions:

1. All eigenvalues of Z are non-negative;

2. Z = WW T for some matrix W .

Let use write PSD = PSDn for the collection of all n× n positive semi-definite matrices.

Let us consider the matrix U whose ith row is given by f(xi) = ui and let Z = UUT ∈ PSD.
In this way (11.1) is equivalent to

d(xi, xj)
2 ≤ zii + zjj − 2zij ≤ γ2d(xi, xj)

2 for all1 ≤ i < j ≤ n. (11.2)
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since ||ui − uj ||2 = zii + zjj − 2zij . Hence, we see that c2(X, d) ≤ γ if and only if there is a
positive semi-definite matrix Z satisfying (11.2).

However, this is an optimisation problem which can be solved in polynomial time using the
so-called ellipsoid algorithm.

So, the algorithm above constructs an equivalent optimisation problem, and solves it using
the ellipsoid algorithm. However, if we look at the dual problem we can extract a handy method
for proving lower bounds on the distortion. However, to do so, we need to know how to dualise
the constraint that Z ∈ PSD. We can do so using a simple but useful fact from linear algebra.

Claim 11.4. A matrix Z is positive semi-definite if and only if
∑

i,j qi,jzi,j ≥ 0 for all positive
semi-definite matrices Q.

Proof. To prove the sufficiency of the condition, given an arbitrary v ∈ Rn let us consider the
matrix Q ∈ PSD given by qi,j = vivj . Then

vZvT =
∑
i,j

qi,jzi,j ≥ 0,

and so Z ∈ PSD.

For the converse, we first note that any positive semi-definite matrix of rank 1 is of the form
qi,j = vivj for some v ∈ Rn, and so

∑
i,j qi,jzi,j ≥ 0 since Z ∈ PSD. However, any positive

semi-definite matrix can be written as UUT for some matrix U with orthogonal rows. Hence,
every Q ∈ PSD can be written as the sum of rank 1 positive semi-definite matrices, implying
the claim.

Theorem 11.5. [Linial-London-Rabinovich] For any finite metrix space (X, d)

c2(X, d) = max
P∈PSD,PuT=1

√√√√ ∑
pi,j>0 pi,jd(xi, xj)

2

−
∑

pi,j<0 pi,jd(xi, xj)
2
.

Proof. As we saw, c2(X, d) is the solution to the primal problem∑
i,j

qi,jzi,j ≥ 0 for all Q ∈ PSD,

zii + zjj − 2zij ≥ d(xi, xj)
2 for all ij,

γd(xi, xj)
2 ≥ zii + zjj − 2zij for all i, j.

Hence, duality implies that for γ < c2(X, d), there must exist a non-negative combination of the
constraints of the primal problem that yields a contradiction.

So, we are looking for a linear combination of the constraints that yields a contradiction. So
we have a contradiction of the form∑
k

akq
k
i,jzi,j +

∑
i,j

bi,j(zii+ zjj − 2zij)+ ci,j(zii+ zjj − 2zij) ≥
∑
i,j

bi,jd(xi, xj)
2+ γ2ci,jd(xi, xj)

2,

where we’ve chosen some set of matrices Q1, Q2 . . . ∈ PSD and we have ak, bi,j ,−ci,j ≥ 0.
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We first note that, since PSD forms a positive cone, we may assume that there is a single
matrix Q = Q1 and that a1 = 1.

Then, in order to cancel the off-diagonal variables zi,j on the left hand side, we see we need
to take

� bi,j =
qi,j
2 and ci,j = 0 if qi,j > 0; and

� bi,j = 0 and ci,j = − qi,j
2 if qi,j < 0.

In order for the diagonal entries zi,i to be cancelled by this process we see that we need

0 = zi,i

qi,i +
∑
qi,j>0

qi,j + qj,i
2

+
∑
qi,j<0

qi,j + qj,i
2

 = zi,i
∑
i,j

qi,j .

Hence, this can only be a contradiction if the row sums of Q are 0. Assuming this to be the case
we see that the inequality we end up with is

0 ≥
∑
qi,j>0

qi,jd(xi, xj)
2 + γ2

∑
qi,j<0

qi,jd(xi, xj)
2,

which is a contradiction if and only if

γ ≤

√√√√ ∑
qi,j>0 qi,jd(xi, xj)

2

−
∑

qi,j<0 qi,jd(xi, xj)
2
.

As we will see, this theorem is useful as it allows us to get a lower bound on c2(X, d) by
simply choosing an appropriate positive semi-definite matrix P and evaluating the function in
the theorem.

11.3 Distortion bounds via semi-definite duality

Let us demonstrate the power of Theorem 11.5 by applying it to some graph metrics. Given a
graph G = (V,E) there is a natural metric space (V, dG) given by the graph distance dG(x, y).
Let us write c2(G) = c2(V, dG).

11.3.1 Embedding the hypercube into Euclidean space

Recall that Qr is the r-dimensional hypercube and note that the graph metric r := dQr coincides
with the Hamming metric. There is a natural embedding of Qr into Rr given by identifying the
vertices of Qr with {0, 1}r, and it is easy to check that the contraction of this map is

√
r and

the expansion is one. Hence, c2(Q
r) ≤

√
r.
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In order to show that this is best possible, we want to choose a clever positive semi-definite
matrix P . Let us define

px,y =


−1 if d(x, y) = 1

r − 1 ifx = y

1 ifd(x, y) = r

0 ifelse

Then we see that PuT = 0 and it is easy to check that P ∈ PSD (for example by determining
its spectrum, which is the same of the hypercube).

However, we can check that∑
px,y>0

qx,yd(x, y)
2 = r22r and −

∑
px,y<0

qx,yd(x, y)
2 = r2r

and so, by Theorem 11.5, it follows that c2(Q
r) ≥

√
r and well. Hence c2(Q

r) =
√
r.

11.3.2 Embedding expander graphs into Euclidean space

We note first a simple fact - for any graph G we have c2(G) = diam(G). Indeed, if we simply
map the vertices of G arbitrarily to the vertices of a simplex in Rn then, since the pairwise
distance of all vertices in the simplex is one, the expansion is 1 and the contraction is equal to
the diameter of G.

In particular, since constant degree expander graphs have logarithmic diameter, we see that
they can be embedded with logarithmic distortion. We will see that this is optimal up to a
multiplicative constant.

To do so we will need the following simple lemma.

Lemma 11.6. Let G be an (n, k)-graph with an even number of vertices and let H be the graph
on the same vertex set, where two vertices are adjacent if their distance in G is at least logk n.
Then H has a perfect matching.

Proof. Since G is k-regular, it follows that there are at most n
2 vertices at distance at most

logk n − 1 from any fixed vertex, and so the minimum degree of H is at least n
2 . Hence, by

Dirac’s theorem H contains a Hamilton cycle, and so a perfect matching.

Theorem 11.7 (Linial-London-Rabinovich). Let k ≥ 3 and let ϵ > 0. If G is an (n, k)-graph
with λ2(G) ≤ k − ϵ, the c2(G) = Ω(log n), where the implicit constant only depends on k and ϵ.

Proof. Let H be the graph defined in the statement of Lemma 11.6 and let B be the adjacency
matrix of the perfect matching M in H guaranateed by the lemma.

Let us consider the matrix P = kI−A(G)+ϵ(B−I). Since G is k-regular and B is 1-regular,
it follows that PuT = 0. We wish to show that P ∈ PSD.
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Given an arbitrary x ∈ Rn we wish to show that xPxT ≥ 0. Note that, since u is an
eigenvector of P with eigenvalue 0, we may assume that x ⊥ u. then we see that

x(kI −A(G))xT ≥ (k − λ2)||x||22 ≥ ϵ||x||22,

and
x(B − I)xT =

∑
(i,j)∈M

2xixj −
∑
i

x2i = −
∑

(i,j)∈M

(xi + xj)
2 = −||x||22.

It follows that
xPxT ≥ ϵ||x||22 − ϵ||x||22 = 0,

as desired.

Furthermore, since P is negative off the diagonal for all edges of G, and positive off the
diagonal for all edges of B (note an edge cannot be in B and G, since adjacent vertices in G are
too close to be adjacent in B), we can calculate

−
∑

pi,j<0

d(i, j)2pi,j ≤ e(G) = kn;

and ∑
pi,j>0

d(i, j)2pi,j ≥ ϵn(logk n)
2.

Hence, it follows from Theorem 11.5 that

c2(G) ≥
√

ϵn(logk n)
2

kn
= O(log n),

as claimed.

More generally we can view these two examples from the point of view of Poincaré type
inequalities on graphs. Given a graph function f : V (G) → Rn, a Poincaré type inequality
compares the average of terms ||f(u) − f(v)||2 considering over all pairs of vertices with just
those considered over the edges of G.

Theorem 11.8. Let G = (V,E) be a k-regular graph with second eigenvalue λ2. For every
embedding f : V → Rn

E(u,v)∈V 2 ||f(u)− f(v)||22 ≤
k

k − λ2
E(u,v)∈E ||f(u)− f(v)||22.

Sketch. We first note that it suffices to prove the theorem for f : V → R, since if the theorem
holds co-ordinate wise for f then it clearly holds for f . We also note that, since both sides of the
inequality of invariant under translation by a constant, we may assume that f has average 0.
However then the inequality is just the variational definition (in terms of the Rayleigh quotient)
of the second eigenvalue.

The previous results for embedding the hypercube and expander graphs can be derived (at
least up to a constant factor) from this inequality.
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11.4 Algorithms for cut problems via embeddings

Let us consider the natural computational problem of determining the expansion ratio h(G)
of an n vertex graph G. This is just one of a family of related problems to do with finding
edges cuts, for example finding balanced cuts, which often arise naturally as important parts of
‘divide-and-conquer’ type algorithms, where small cuts guarantee smaller interference between
the solutions in different parts.

Whilst it has been known for a long time that determining h(G) is co-NP hard, it is an
interesting and open questions how well it can be approximated in polynomial time. A major
breakthrough came from the work of Leighten and Rao who showed that there is a polynomial
time algorithm which approximates h(G) to within a factor of O(log n).

Here we will present a different proof of this fact, due to Linial, London and Rabinovich,
which solves this problem by establishing a connection between cut problems in graphs and
low-distortion embeddings in Euclidean space. We note that it has since been shown that a
factor of O(

√
log n) is achievable, and it is an open question whether in fact a constant factor

approximation is.

We first note

2h(G)

n
=

2

n
min
|S|≤n

2

e(S, Sc)

|S|
≥ min

e(S, Sc)

|S||Sc|
≥ 1

n
min
|S|≤n

2

e(S, Sc)

|S|
=

h(G)

n
,

and so, if we only care about approximating h(G), it is equivalent to look at the problem of

approximating min e(S,Sc)
|S||Sc| := Ψ(G).

It turns out that this questions of minimising e(S,Sc)
|S||Sc| can be quite nicely restated in terms

of some very natural semimetrics, the cut metrics. Given a subset S ⊆ V (G) we can define a
semimetric on V be letting dS(x, y) = 0 if x, y ∈ S or x, y ∈ Sc and dS(x, y) = 1 otherwise. In
this case we see that

e(S, Sc)

|S||Sc|
=

∑
(i,j)∈E dS(i, j)∑

i,j d(i, j)
.

Hence, Ψ(G) is equivalent to minimising a certain quantity over cut metrics. A natural relaxation
would then be to minimise this quantity over all semimetrics so let us define

LR(G) = min
d a semimetric

∑
(i,j)∈E d(i, j)∑

i,j d(i, j)
.

It is then clear that LR(G) ≤ min e(S,Sc)
|S||Sc| ≤ 2h(G)

n , but we will also be able to show that
h(G)
n ≤ min e(S,Sc)

|S||Sc| ≤ O(log n)LR(G). Furthermore, since LR(G) can be expressed as the solution
of the following linear programming problem

minimise
∑

(i,j)∈E

d(i, j)

subject to
∑
i,j

d(i, j) = 1

d(i, k) ≤ d(i, j) + d(j, k) for all i, j, k

d(i, j) ≥ 0 for all i ̸= j

d(i, i) = 0 for all i,
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we can find a solution to LR(G) in polynomial time.

However, there is another natural intermediary relaxation of Ψ(G) given by

LR1(G) = min
d an ℓ1-semimetric

∑
(i,j)∈E d(i, j)∑

i,j d(i, j)
,

where we an ℓ1-semimetric is any semimetric which arises from mapping V into Rn under the ℓ1
norm. We note that it is easy to show that every ℓ2-metric is also an ℓ1-(semi)metric. In fact,
it turns out that this is not even a relaxation at all!

Indeed, if we view the set of semimetrics d on V as living in R(
n
2), then it is clear that the

set of semimetrics forms a complex cone (they are closed under positive scalar multipliation and
convex combinations). It is perhaps less clear that the ℓ1-semimetrics also form a convex cone,
but this turns out to be tree. In fact, it turns out that they coincide with the convex cone CUT
generated by the cut metrics.

Lemma 11.9. CUT coincides with the set of ℓ1-semimetrics.

Proof. Let d ∈ CUT so that d =
∑

S⊆[n] αSdS with αS ≥ 0 for all S. Let us take an embedding

f of [n] into R2n as follows

f(i)S = αS if i ∈ S and 0 otherwise.

It is easy to see that

d(i, j) =
∑

S : i∈S,j ̸∈S or i ̸∈S,j∈S
αS = ||f(i)− f(j)||1.

Conversely, suppose that d is an ℓ1-semimetric and let f : [n] → Rn witness this. Since d is
just the sum of the metrics given by the co-ordinates of f , and CUT is a cone, it suffices to show
that each co-ordinate lies in the cut cone. However embeddings fi : [n] → R are particularly
simple, and it is easy to see that they can be generated by cut metrics.

Furthermore, since the cut cone is convex, the optimum in LR1(G) is obtained on an extremal
ray, which are then clearly given by the cut metrics, and so it follows that Ψ(G) = LR1(G).
However, since every ℓ2-metric is an ℓ1-semimetric, it follows from Theorem 11.1 (which also
holds for semimetrics) that we can approximate the semimetric minimising LR(G) by an ℓ1-
semimetric with distortion O(log n). It follows that O(log n)LR(G) ≥ LR1(G) = Ψ(G) and
hence we can approximate h(G) up to an O(log n) factor in polynomial time.

We note that the question of determining Ψ(G) is very closely related to another well-known
computational problem, that of determining the maximal all-pairs multicommodity flow in a
graph, whose solution is in fact given by LR(G).

This type of argument seems quite alluring from a computing perspective - any problem to
do with minimising certain types of cuts e(S, Sc) in a graph G be be transformed into a convex
optimisation problem over the cut cone. There is a general theory of optimisation over some
convex domain Ω which would then be very useful for solving such problems, but in order to
apply it one has to be able to solve efficiently two basic problems for Ω:
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� Membership - Given a point x to determine if x ∈ Ω;

� Separation - Given a point x ̸∈ Ω to find a hyperplane separating x from Ω.

Unfortunately, the cut cone is computationally quite bad. Even the membership problem, which
is the simpler of the two, is NP -hard. To put it another way, it is difficult to determine if a
metric is an ℓ1-metric.

However, this does suggest the following problem.

Question 11.10. Is there a different cone which is a good approximation (ideally constant
distortion) to the cut cone, but for which the membership and separation problems can be solved
in polynomial time (in the dimension)?

In fact, Linial and Goemans, who raised this question, even suggested a suitable candidate:
We say that a metric space (X, d) is of negative type if

√
d is an ℓ2-metric. It can be shown that

such metrics form a convex cone for which both the membership and separation problem can be
solved efficiently. Also, every ℓ1-metric is of negative type.

Question 11.11. Can every metric of negative type be embedded into an ℓ1-metric with bounded
distortion?
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